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Summary

Hearing aids contain miniature loudspeakers and microphones. Following
the trend of miniaturization, hearing aids and the acoustic transducers in-
side become smaller and smaller. is presents new allenges for engi-
neers who develop su transducers. Because of the small geometries, the
viscothermal boundary layer effects cannot be neglected in their acoustic
models. is thesis presents four numerical viscothermal acoustic models
that can aid the engineer in the development of, for example, these minia-
ture loudspeakers and microphones.

e ideal viscothermal acoustic model for a design environment would
be computationally efficient, applicable for arbitrary geometries and usable
in fluid structure interaction problems. ese three aspects are satisfied to a
different degree for ea of the four presented models. e aspects of appli-
cability for arbitrary geometries led to oosing the finite element method
() as the numerical solution framework for the models. e soware
C is used to implement the presented viscothermal acoustic models.
is has the added advantage that structural finite elements supplied by
C can be used in fluid structure interaction problems.

e first of the presented models is a finite element implementation of
the fully coupled viscothermal acoustic equations: the linear time harmonic
Navier-Stokes equations. is general model requires a minimum of four
field values in 3-: three velocity components and the temperature. How-
ever, a mixed  formulation with the pressure as an additional field is
used to ensure a good convergence rate. e drawba of this model is that
it requires large computational resources, especially in 3-.

Some authors label viscothermal acoustics as a ‘three wave theory’ with
coupled viscous, thermal and acoustic waves. e viscous and thermal
waves damp the acoustic waves. It is possible to make accurate models
using the approximation that the acoustic wave does not influence the vis-
cous and thermal waves. e other three of the four viscothermal acous-
tic models use this approximation. Two of these models are known in the
literature. ese models are computationally efficient, but have the disad-
vantage that they are not applicable for arbitrary geometries: one model is
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for waveguides below the cut-off frequency and the other model is for ge-
ometries of whi all aracteristic lengths are mu larger than the viscous
and thermal boundary layer thinesses. e third model is new and does
not have this disadvantage. It can be used for arbitrary geometries and is
computationally mu more efficient than the fully coupled model.

e viscothermal acoustic models are validated by means of measure-
ments, an analytic model and mutual comparisons. Besides the relatively
simple examples that are used for the validation, a model of a hearing aid
loudspeaker is presented. e model has a good correspondence to the mea-
surements. Several parameter studies for this loudspeaker are presented.

Ea of the the four presented viscothermal acoustic models has its own
advantages, disadvantages and limitations. Together, they form a set of
analysis tools for the engineer that can be used to develop small acoustic
transducers, or efficiently solve many other viscothermal acoustic problems.



Samenvaing

Hoorapparaten bevaen miniatuur luisprekers en microfoons en worden
steeds kleiner. Hierdoor moeten de akoestise componenten die erin zien
ook steeds kleiner worden. Dit stelt de ingenieurs die deze componenten
ontwikkelen voor nieuwe uitdagingen. Vanwege de kleine geometrieën kun-
nen de viskeuze en thermise grenslaageffecten van de lut niet worden
verwaarloosd in de akoestise modellen die zij gebruiken. Dit proefsri
presenteert vier numerieke viskotherme akoestise modellen die de ingeni-
eur kunnen ondersteunen bij het ontwikkelen van bijvoorbeeld deze kleine
luidsprekers en microfoons.

Het ideale viskotherme akoestise model voor een ontwikkelomgeving
is snel, toepasbaar voor willekeurige geometrieën en gesikt voor proble-
men waarin de akoestiek is gekoppeld aan een constructie. Deze drie aspec-
ten worden in versillende mate vervuld door elk van de vier viskotherme
akoestise modellen. Het aspect van toepasbaarheid voor willekeurige geo-
metrieën hee geleid tot de keuze voor de eindige elementen methode ()
als de numerieke oplosmethode. Het computerprogramma C is ge-
bruikt om de gepresenteerde viskotherme akoestise modellen te imple-
menteren. Dit hee als bijkomend voordeel dat de constructie in gekoppelde
problemen met reeds in C aanwezige elementen kan worden gemo-
delleerd.

Het eerste van de gepresenteerde modellen is de eindige elementen for-
mulering van de volledig gekoppelde viskotherme akoestise vergelijkin-
gen: de lineaire tijd-harmonise Navier-Stokes vergelijkingen. Dit alge-
mene model hee minimaal vier velden nodig in 3-: drie snelheidscom-
ponenten en de temperatuur. Een gemixte  formulering met de druk als
een extra veld is gebruikt om een goede convergentiesnelheid te verkrijgen.
Dit model hee een hoog geheugengebruik en een lange rekentijd als nadeel,
vooral in 3-.

Sommige auteurs bestempelen viskotherme akoestiek als een ‘drie gol-
ven theorie’, met gekoppelde viskeuze, thermise en akoestise golven.
De viskeuze en thermise golven dempen de akoestise golven. Het is
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mogelijk om nauwkeurige modellen te maken met de benadering dat de
akoestise golven de viskeuze en thermise golven niet beïnvloeden. De
overige drie van de vier viskotherme akoestise modellen gebruiken deze
benadering. Twee hiervan zijn al bekend uit de literatuur. Deze modellen
zijn efficiënt, maar hebben het nadeel dat ze niet voor willekeurige geome-
trieën toepasbaar zijn: één model is voor golfgeleiders onder de grensfre-
quentie en het andere model is voor geometrieën waarin alle karakteristieke
lengtes veel groter zijn dan de viskeuze en thermise grenslaagdiktes. Het
derde model is nieuw en hee dit nadeel niet. Het kan gebruikt worden
voor willekeurige geometrieën en hee minder rekenkrat nodig dan het
volledig gekoppelde model.

De vier viskotherme akoestise modellen zijn gevalideerd aan de hand
van metingen, een analytis model en onderlinge vergelijkingen. Naast de
relatief eenvoudige voorbeelden die hiervoor gebruikt zijn, wordt eenmodel
van een hoorapparaatluidspreker gepresenteerd. Dit model komt goed over-
een met de meetresultaten. Enkele parameterstudies voor de luidspreker
worden gepresenteerd.

De vier viskotherme akoestise modellen hebben ieder hun eigen voor-
delen, nadelen en beperkingen. Ze vormen een verzameling analyse me-
thodes voor de ingenieur die gebruikt kan worden om kleine akoestise
componenten te ontwikkelen, of om vele andere viskotherme akoestise
problemen efficiënt op te lossen.
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Chapter 1

Introduction

Miniaturization is an ongoing trend in many products, to whi hearing
aids are no exception. Although the larger ‘behind the ear’ type is still the
standard, the smallest types can fit in the ear canal. Clearly, the dimensions
of themicrophone and loudspeaker inside the hearing aid need to be reduced
accordingly.

S is a company that manufactures and develops miniature micro-
phones and loudspeakers for hearing aids. Accurate mathematical models
are a valuable tool in the development process of these devices. e acous-
tic part of these models is not accurate if it is based on standard lossless
acoustic theory: these devices are so small that viscothermal effects (heat
conduction and viscous shear) have to be included. erefore, the trend of
miniaturization increases the need for viscothermal acoustic models.

is thesis is the final report of a PhD project that is a cooperation be-
tween the University of Twente and S. e title of this thesis is ‘Vis-
cothermal acoustics using finite elements — Analysis tools for engineers’.
e basic concepts of viscothermal acoustics and the finite element method
are introduced aer presenting the problem definition. is apter ends
with an outline of the thesis.

1.1 Problem definition

With hindsight, this thesis addresses the following problem: How to make
efficient viscothermal acoustic models for arbitrary geometries, including
fluid structure interaction. Because arbitrary geometries need to be mod-
eled, numerical methods are a maer of course. Although the literature
presents several viscothermal acoustic  models (see [20] and its refer-
ences),  is used in this project su that the fluid structure interaction
can be modeled in a straightforward manner using existing structural finite
elements. e terms ‘efficient’ and ‘arbitrary geometries’ are rather incom-
patible: if certain geometric restrictions are accepted, the models can be

1
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made more efficient. erefore, this thesis also covers two of su models,
whi are recommended if applicable; see sections 3.2 and 3.3. Besides these
existing models, two models that are applicable for arbitrary geometries are
presented. e first of these models is a finite element formulation of the
coupled linearized Navier-Stokes equations for viscothermal acoustics; see
apter 2. e second model is a more efficient alternative in whi the full
coupling is approximated as one-way coupling; see section 3.4.

As mentioned, S’s goal is to create predictive models of their
transducers, especially of their hearing aid loudspeakers (called receivers).
Su a hearing aid receiver is introduced next, since it is useful to have a
specific application in mind. Nevertheless, the finite element procedures
developed in this thesis are general and can be applied to many acoustic
problems, not just to hearing aid receivers.

1.1.1 Hearing aid receiver

eminiature loudspeaker that is used in hearing aids is called ‘receiver’ in
the terminology that stems from telephony. Figure 1.1 shows a cross section
of su a transducer. is type has a length of 8 mm, whi is larger than
average. e receiver contains a ‘balanced armature’ motor with an actu-
ation principle that uses magnetic forces, instead of Lorenz forces that are
commonly used inmoving coil loudspeakers. e principle can be explained
using the labeled parts in the figure. An armature is located between two
equally poled permanent magnets that both aract it with an equal force;
opposite magnetic poles face the armature. A current through the coil in-
duces a magneto motive force in the armature. As a result, the tip of the
armature, near the drive pin, is aracted more by one of the two permanent
magnets and less by the other, depending on the direction of the current in
the coil. e magnet shells close the magnetic loop to the armature (this is
not clearly visible in figure 1.1). e armature bends and the drive pin trans-
fers the movement of its tip to the membrane. Although in the figure the
foil is drawn flat around the membrane, in the actual receiver it is formed
as a gully to allow the membrane to move. Furthermore, the foil provides
an airtight seal between the ba volume and the front volume. erefore
the membrane movement compresses and rarefies the air in the ba and
front volume. e ba volume is closed, but the front volume is connected
to the spout, whi can be connected to a tube that leads to the ear canal.
Eventually, the compression in the front volume leads to a pressure that can
be heard.

In the above description, four physical domains can be identified: elec-
tric, magnetic, meanic and acoustic. Ea of these domains presents its
own difficulties and allenges, but this thesis focuses on the acoustic as-
pects. Because of the small size of the receiver, the dissipative viscothermal
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Figure 1.1: Cross section of a hearing aid receiver. Its total length is 8 mm.
e important parts are labeled.

effects, introduced later, cannot be neglected in the acoustic model. Further-
more, the geometry of the air domains in the receiver are relatively compli-
cated, su that numerical models are beneficial. Analytic or semi-analytic
models of the receiver may be created if simplified geometries are assumed,
but this is a tedious process and the errors of simplifying the geometry are
typically unknown. For this reason the focus of this project that started
with a semi-analytic model of another receiver (see [40, 39, 11, 9]), shied
to finite element modeling. Chapter 5 presents a model of the receiver that
uses one of the developed  methods.

1.2 Introduction to viscothermal acoustics

Viscothermal acoustics can be regarded as a special case of fluid dynam-
ics, or as a generalized case of standard acoustics. Here, standard acoustics
refers to lossless wave propagation, whi is more clearly designated by the
term isentropic acoustics. Chapter 2, whi presents the governing equa-
tions, is wrien from a fluid dynamics point of view, while this introduction
and apter 3 focus on the differences between viscothermal acoustics and
isentropic acoustics.

Readers who are interested in a historic perspective are encouraged to
read Truesdell’s ‘History of classical meanics’ [69, 70], whi covers many
of the (fluid) meanic, mathematic and thermodynamic contributions that
are required for viscothermal acoustics. e history of the Navier-Stokes
equations is presented in the PhD thesis of Inayat Hussain [34]. Kirhoff
was the first to combine the pieces of theory for viscothermal acoustics in his
paper [47] published in 1868. e literature contains many (semi-)analytic
solution methods of these equations that are inspired by this paper. Nij-
hof [55] elaborates on these methods. is thesis focuses on numerical finite
element methods for these equations, starting with a direct implementation
in apter 2.
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1.2.1 Time harmonic form and phasor notation

Before the basic properties of viscothermal acoustics are introduced, a few
remarks should be made regarding the notation. e equations are for-
mulated in the complex perturbation amplitudes, called phasors, whi are
commonly used in time harmonic acoustics with the Helmholtz equation.
e time harmonic form is efficient because the s do not explicitly de-
pend on time anymore. is comes at the relatively small cost of introducing
complex valued fields. In problems with a single frequency, the relation for
all fields is

ϕ̌=ϕ0+ℜ
(
ϕe iωt

)
, (1.1)

where the operator ℜ takes the real value of its argument, ω and t denote
angular frequency and time, ϕ̌ is the time dependent total field value, ϕ0
is the quiescent field value and ϕ is the complex perturbation amplitude of
the field also called phasor. e phasor represents both the magnitude

∣∣ϕ∣∣
and the phase angle ∠ϕ of the perturbation. e above relation holds for
all fields, for example the pressure p in [Pa], the temperature T in [K] or
the velocity v in [m/s]. Notice that e iωt is used in equation (1.1) and the
remainder of this thesis, while e−iωt is also widely used in the viscothermal
acoustic literature.

Equation (1.1) provides a straightforward way to present the phasor no-
tation. However, the models in this thesis are not only valid for single fre-
quencies. e discrete Fourier transform may be used to decompose a more
general problem into contributions at a limited number of frequencies. Next,
a time harmonic problem can be solved for ea of these frequencies. And
last, the solution of the general problem can be expressed as the superpo-
sition of the solutions at the individual frequencies by using the inverse
discrete Fourier transform.

1.2.2 Linear acoustic assumptions

e use of phasors is efficient for linear differential equations. However
in general, the Navier-Stokes equations are nonlinear. e introduction of
the Navier-Stokes equations is delayed until apter 2, but the linear acous-
tic assumptions that eventually lead to the used time harmonic form are
mentioned here. Equation (1.1) denotes a perturbation around a constant
value. is perturbation should be relatively small in linear acoustics. e
assumptions are:

1. Zero quiescent velocity:
v0 = 0. (1.2)
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2. e density, pressure, temperature, enthalpy and entropy perturba-
tions are small compared to their quiescent values:∣∣ϕ/ϕ0

∣∣≪ 1. (1.3)

e exception is the velocity, whi should be smaller than the speed
of sound c0: ∣∣v/c0

∣∣≪ 1. (1.4)

ese assumptions are used in all models in this thesis. Applications in
whi non-linear effects are important require more general models.

1.2.3 Isentropic acoustics

Isentropic acoustics is conveniently introduced by two partial differential
equations: the momentum equation (mass effects) and the continuity equa-
tion (stiffness effects):

iωρ0v =−∇p (momentum), (1.5)

ρ0∇·v =−iωρ (continuity), (1.6)

where v , p and ρ denote the velocity, pressure and density perturbations, i ,
ω and ρ0 are imaginary unit, angular frequency and quiescent density, and
the operators ∇ and ∇· are the gradient and the divergence. ese equations
are the balance laws of momentum and mass respectively. In addition to
these, the constitutive equations are needed to relate the pressure to the
density and to the temperature

ρ = p

c20
, (1.7)

T = p

ρ0Cp
, (1.8)

for an isentropic ideal gas. us the relation between the temperature and
the pressure is algebraic in isentropic acoustics. By contrast, a  is needed
to describe this relation in viscothermal acoustics.

e momentum equation (1.5), continuity equation (1.6) and acoustic
equation of state (1.7) can be combined, resulting in the acoustic Helmholtz
equation

∆p +k2
0p = 0. (1.9)

e symbol p denotes the complex valued amplitude of the pressure per-
turbation, ∆ is the Laplace operator and k0 is the (frequency dependent)
acoustic wave number

k0 ≡ω/c0, Z0 ≡ ρ0c0. (1.10)
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e aracteristic impedance Z0 is another important acoustic parameter,
whi describes the ratio of the pressure over the velocity in the propagation
direction for a plane wave. is can be easily verified in 1- by using the
momentum equation (1.5) and the plane wave solution p = e−i k0x .

e Helmholtz equation (1.9) can be solved if proper boundary condi-
tions are prescribed; one at ea boundary location. e possible bound-
ary conditions are pressure, normal velocity and impedance (the ratio pres-
sure/normal velocity). e 1- Helmholtz equation can be solved analyti-
cally by scaling the rightward traveling wave e−i k0x and leward traveling
wave e i k0x to the boundary conditions. If convenient, the solutions sin(k0x)
and cos(k0x) can be used instead of the exponentials to find a linear combi-
nation that satisfies the boundary conditions. Analytic solutions in 2- and
3- are only available for a few simple geometries with simple boundary
conditions. All solutions of equation (1.9) describe lossless wave propaga-
tion. Although the boundary conditions can absorb and generate energy.

e isentropic acoustic momentum and continuity equations can be ex-
pressed with the wave number and the aracteristic impedance as

v = −∇p

i k0Z0
(momentum), (1.11)

∇·v = −i k0
Z0

p (continuity). (1.12)

e equations are presented in this form, because similar equations appear
in the viscothermal acoustic models presented in Chapter 3. Unlike in isen-
tropic acoustics, those models have a complex valued wave number and
aracteristic impedance.

1.2.4 Viscous and thermal effects

emain concepts of viscothermal acoustics are introduced here. Viscother-
mal acoustics is more general than isentropic acoustics: it is more accurate
especially for small geometries.

e acoustic domain can be divided into a boundary layer region and
a bulk as shown in figure 1.2. e acoustics in the bulk can be accurately
described as isentropic. In the boundary layer, however, the viscothermal
effects are important and viscothermal acoustic models are needed to de-
scribe them. In problems with large geometries, the boundary layer effects
can be neglected because the boundary layer regions are very small com-
pared to the bulk, and the boundary layers do not ange the pressure and
pressure gradient mu locally. By contrast, in problems with small geome-
tries in whi the boundary layers occupy a substantial part of the acoustic
domain, the acoustic models typically need to account for the viscothermal
effects to accurately describe the wave propagation.
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.Bulk
.Boundary layer

.x⊥

Figure 1.2: A geometry can be divided into two regions: the bulk and the
boundary layer. e isentropic acoustic assumptions are accurate in the
bulk, while viscothermal effects dominate in the boundary layer.

Description of the viscous and thermal effects

e viscous effect is related to the viscosity of the acoustic medium (air).
Viscosity resists velocity gradients by creating opposing forces. Imagine an
acoustic shear velocity perturbation near a fixed wall, just in the bulk, whi
is described by equation (1.5). If the velocity of the air that is in contact with
the wall is assumed to be zero, then the velocity varies from zero to the bulk
value across the thin boundary layer. is results in high velocity gradients
and proportionally high viscous forces. is viscous effect can be modeled
by adding the appropriate terms to the momentum equation (1.5). ese
terms are not needed in the bulk, because there the velocity gradients and
the resulting viscous forces are typically mu smaller and can be neglected.

e thermal effect is related to the heat conductivity of air, whi is
proportional to the temperature gradient. It can be explained with a similar
thought experiment. Now imagine an acoustic pressure perturbation near
a wall, just inside the bulk. e isentropic acoustic model is accurate in the
bulk and therefore the pressure perturbation causes a proportional temper-
ature perturbation as equation (1.8) describes. Assume that the nearby wall
and the air that is in contact with it remain at a constant temperature. Now
the temperature perturbation varies across the thin boundary layer from
zero to the bulk value. is large temperature gradient results in a har-
monic heat flux to and from the wall. e thermal effect can be modeled by
replacing equations (1.8) and (1.7) by alternatives that do account for heat
conduction in the boundary layer. Heat flow is negligible in the bulk (away
from walls), because the temperature gradients and the proportional heat
flow are mu smaller: regions of high and low pressure and temperature
are typically half a wavelength apart.

e viscous forces and heat conduction are, in thermodynamic termi-
nology, irreversible processes that damp the acoustic waves. is does not
ange the local pressure field mu, the pressure and pressure gradients
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Figure 1.3: e boundary layer shape (. ) and its envelope function (. ).
e table shows the values of the envelope centered around unity for sev-
eral distances from the boundary at x⊥ = 0. e envelope has values of
approximately 1% of the jump at λ′

h , and 2‰ of the jump at λh .

remain smooth across the boundary layer despite the viscous and thermal
effects, but the small local effects cumulate. In most cases, the viscous ef-
fects cause more damping than the thermal effects. is does not imply that
the thermal effects are insignificant. Both contribute to the acoustic damp-
ing and do so at different locations: viscosity at locations with large shear
velocity amplitudes near fixed walls and heat conduction at locations with
large pressure amplitudes near isothermal walls.

Boundary layer profiles

If a uniform pressure perturbation is present in the geometry of figure 1.2,
then thermal boundary layers form along the isothermal walls as just de-
scribed. e temperature distribution or ‘profile’ along the given coordinate
x⊥ is ploed in figure 1.3. e distances δh , λ′

h and λh in the graph are
different interpretations of the boundary layer thiness that are discussed
later. Notice that the temperature does not increase monotonically from the
wall to the bulk, but has a small ‘overshoot’ near λ′

h/2. In fact, the profile
is a heavily damped sine around the bulk value (unity here) that oscillates
within the exponential envelope function that is shown with doed lines in
the figure. e table in the figure lists the amplitude of the envelope at the
marked locations.

e shear velocity profile (that occurs near no-slip walls with a non-
zero velocity in the bulk) has an identical shape as the temperature profile
in figure 1.3. e viscous and thermal profiles ange if the boundary has a
curvature, or if the geometry is so narrow that the bulk between two bound-
aries disappears. e thinesses of the thermal and viscous boundary layers
are not equal, but of the same order of magnitude and mu smaller than
the acoustic wavelength, as is shown next.
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Three wave numbers and length scales

Amongst other authors, Meel [52] describes the Kirhoff’s viscothermal
acoustic equations as a ‘three wave theory’: interaction of a viscous wave,
a thermal wave and an acoustic wave.¹ is label may be confusing at first
sight: while (isentropic) acoustics is clearly a wave and is described by the
wave equation in time dependent models, the viscous and thermal effects
certainly do not resemble a wave. In fact, these effects can be described
by the diffusion equation in time dependent models. Still, the three wave
paradigm is insightful, since both the wave equation and the diffusion equa-
tion simplify to the Helmholtz equation in time harmonic form. erefore,
they can be treated alike: isentropic acoustics is an undamped wave and
the viscous and thermal effects are heavily damped waves. Moreover, the
viscothermal effects add damping to the acoustic wave. In the limit of ex-
tremely narrow waveguides this damping is so profound that the acoustic
wave equation becomes a diffusion equation itself. With that in mind it
does not seem useful to discriminate between slightly damped and heavily
damped waves, or between acoustics and viscous or thermal waves.

Ea of the three waves has its own wave number and length scale. e
acoustic k0, viscous kv and thermal kh wave numbers are defined as

k0 ≡ω/c0, k2
v ≡−iωρ0/µ, k2

h ≡−iωρ0Cp /κ, (1.13)

with ω, c0, ρ0, µ, Cp , κ and i the angular frequency, speed of sound, qui-
escent density, dynamic viscosity, specific heat at constant pressure, heat
conduction coefficient and imaginary unit respectively. e subscripts v
and h are used to refer to ‘viscous’ and ‘thermal’ throughout this thesis.
Notice that the squared viscous and thermal wave numbers are imaginary
as is typical for the time harmonic form of the diffusion equation.² e
wave number k0 aracterizes the isentropic acoustic wave, whi can be
very different than the viscothermal acoustic wave if viscothermal effects
are dominant. In some cases it is possible to define a (complex valued) vis-
cothermal acoustic wave number; see apter 3.

e three wave numbers represent three length scales. e length scale
of the isentropic acoustic wave is defined as the wavelength λ0, but there
are several ways to define the length scale of the viscous and thermal waves.
Similar definitions hold for both, therefore only the thermal wave is used
as an example here. ree considered definitions are shown in figure 1.3:
δh , λ′

h and λh . e symbol λh denotes the thermal wavelength whi is
the period of the damped sine: the thermal profile and its lower envelope

¹e reference proposes a method to decouple the temperature wave.
²e viscous and thermal wave numbers themselves are complex valued, because

p−i =
(1− i )/

p
2.
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Figure 1.4: e acoustic wavelength λ0 (. ) and viscous and thermal
boundary layer thinesses λ′

v ( . ) and λ′
h (. ) versus the frequency,

for air at typical conditions. e boundary layers are mu thinner than
the wavelength for all shown frequencies.

tou at x⊥ = 0 and x⊥ = λh . Another definition for the thermal (and vis-
cous) length scale is the the boundary layer thiness δh as most commonly
defined in the literature (conforming to [53, 58]). At this distance from the
boundary, the magnitude of the temperature envelope is 1± e−1 times the
bulk value. Although any definition of the boundary layer thiness is arbi-
trary, δh seems too small for the boundary layer thiness and λh too large;
see figure 1.3. An intermediate definition of the boundary layer thiness
is used in this thesis denoted as λ′

h . At this value, the temperature pertur-
bation magnitude is within 1% of the value of the bulk. e three different
length scales are defined as

δϕ ≡ −1
ℑ(

kϕ

) , λϕ ≡ 2π
ℜ(

kϕ

) , λ′
ϕ ≡ 2π∣∣kϕ

∣∣ , (1.14)

where ϕ is either 0, v or h, and the operator ℑ takes the imaginary part of its
argument. Notice that λ′

0 =λ0, because the isentropic acoustic wave number
k0 is real valued. In short, ea of the three waves has a wave number and a
wavelength. e wavelengths of the viscous and thermal waves are related
to their boundary layer thinesses.

Figure 1.4 compares the length scales λ′
ϕ of the viscous, thermal and

acoustic waves for a large frequency range ( f = ω/(2π)). Typical values
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for air are used for the figure. Clearly, the viscous and thermal boundary
layers have mutually comparable thinesses that are mu smaller than
the acoustic wavelength at any ploed frequency. e ratio of the squared
viscous and thermal wave number is known as the Prandtl number NPr :

k2
h

k2
v
= NPr ≡

µCp

κ
, (1.15)

whi equals approximately 0.7 for air. erefore, the thermal boundary
layer is a factor 1/

p
0.7 ≈ 1.2 thier than the viscous boundary layer; see

figure 1.4.
Chapter 3 elaborates on the three-wave concept of viscothermal acous-

tics and presents an approximating framework that covers several efficient
viscothermal acoustic models.

1.2.5 Summary

e following viscothermal acoustic concepts have been introduced:
• e time harmonic form of a linear  does not have time as an
explicit variable, but uses complex perturbation amplitudes (phasors).

• Linear acoustic assumptions must be made to derive the acoustic and
viscothermal equations from the non-linear Navier-Stokes equations.

• e momentum and continuity equations of isentropic (lossless)
acoustics depend on two parameters: the wave number and the ar-
acteristic impedance. Some viscothermal acoustic models have com-
plex valued equivalents of these parameters.

• e density and temperature are algebraically related to the pressure
in isentropic acoustics, but not in viscothermal acoustics.

• A domain can be divided in a viscothermal boundary layer region
and the isentropic bulk. Viscothermal effects are important in small
domains for whi the boundary layer thiness is significant.

• e viscous effect is viscous shear near no-slip walls and scales with
the velocity amplitude.

• e thermal effect is heat conduction near isothermal walls and scales
with the pressure amplitude.

• Viscous effects are oen more important than thermal effects, al-
though the thermal boundary layer is thier. is does not mean
that thermal effects can be neglected.

• Viscothermal acoustics is a coupled ‘three wave theory’ with an
acoustic, a viscous and a thermal wave. ree wave numbers kϕ and
three corresponding length scales k ′

ϕ can be defined.

• Viscous and thermal boundary layers are mu thinner than the
wavelength in air at audible frequencies.
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 ⇔ weak form ≈ discrete weak form ⇔ matrix equation

Figure 1.5: e finite element method, from  to  matrix equations.

1.3 Introduction to finite element modeling

e finite element method () is perhaps the most widely used method
to numerically solve partial differential equations (s). e method can
solve s for complicated geometries with unstructured grids. is makes
it a very versatile tool for many problems. e literature on the finite ele-
ment method is vast and an introduction to  may start in many different
ways. e approa taken here is just one that briefly introduces the main
concepts. However, many important parts of the theory are not mentioned
and the reader is referred to an introductory book on the subject for these
parts.

is introduction uses the Helmholtz equation as an example, because
this equation appears several times in this thesis. A boundary value problem
for this equation is

∆ϕ+k2ϕ= f on Ω, (1.16a)

ϕ= g on ∂Ωg , (1.16b)(∇ϕ) ·n = h on ∂Ωh , (1.16c)

where ∆ is the Laplace operator, ϕ is the (complex valued) scalar field that
is solved for, Ω is the domain or geometry of the problem and k is the wave
number whi may be complex valued. e symbols f , g and h contain
the body sources/forces and the values prescribed at the locations ∂Ωg and
∂Ωh of the boundary. In this case, the subscript h in ∂Ωh does not refer
to the thermal wave. On ea location of the boundary ∂Ω one of the two
boundary conditions is prescribed, or ∂Ω= ∂Ωg ∪∂Ωh .

e finite element approximation of the above problem is obtained in
three steps as shown in figure 1.5, whi is inspired by the introduction in
Hughes [31]. ese steps are explained one by one.

1.3.1 From PDE to weak form

e weak form can be obtained from the  in two steps. First the
 (1.16a) is multiplied by a weighing function and integrated over the
domain: ∫

Ω

ϕw
[
∆ϕ+k2ϕ

]
dΩ=

∫
Ω

ϕw f dΩ, (1.17)
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where ϕw is the weighing function (also called test function in the litera-
ture). e above equation is equivalent to the  if the equality holds for
all weighing functions (that are integrable over Ω).

e second step in the derivation is to reduce the highest order of the
derivatives asmuas possible. is can be donewith Green’s theorem (also
called Green’s first identity), whi is a combination of Gauss’ divergence
theorem and the divergence product rule:

∇· (αβ)= (∇α) ·β+α
(∇·β)

(product rule), (1.18)∫
Ω

∇· (αβ)
dΩ=

∫
∂Ω

(
αβ

) ·n d∂Ω (Gauss’ theorem), (1.19)

∫
Ω

α∇·βdΩ=−
∫
Ω

(∇α) ·βdΩ+
∫
∂Ω

αβ ·n d∂Ω (Green’s theorem), (1.20)

with α a scalar field and β a vector field. Green’s theorem can be applied
with α = ϕw and β = ∇ϕ to the term that contains the Laplacian (ϕw∆ϕ =
α∇·β). Aer application of Green’s theorem, the weak form reads:∫

Ω

[−(∇ϕw
) · (∇ϕ)+k2ϕwϕ

]
dΩ=

∫
Ω

ϕw f dΩ−
∫
∂Ω

ϕw
(∇ϕ) ·n d∂Ω. (1.21)

e weak form contains only first order spatial derivatives, both of
the field that we want to solve and of the weighing functions. erefore
both ϕ and ϕw are required to have derivatives that are square integrable.
ese functions are typically continuous, but can have discontinuous spa-
tial derivatives: these functions are C 0 continuous. e requirement for the
solution of the original  (1.16a) is stronger: because it contains second
order derivatives, the solution should be C 1 continuous. is explains the
the name ‘weak form’.

1.3.2 Discretization of the weak form

e solution, the boundary conditions and the weighing functions are ap-
proximated by a linear combination of a finite number of basis functions.
is approximation reads

ϕ≈ϕd + g d , (1.22a)

ϕw ⇒ϕd
w , (1.22b)

with g d an approximation of the essential boundary conditions (1.16b), ϕd
w

a finite number of weighing functions and ϕd an approximation of ϕ− g d ;
ϕd = 0 on ∂Ωg . All finite dimensional approximations are indicated by the
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superscript d . Moreover, the solution ϕd uses the basis that is identical to
the weighing functions ϕd

w , as will be expressed later.
Substitution of the above weak approximations (1.22) into the weak

form (1.21) yields∫
Ω

[
−

(
∇ϕd

w

)
·
(
∇ϕd

)
+k2ϕd

wϕd
]

dΩ=
∫
Ω

ϕd
w f dΩ−

∫
∂Ωh

ϕd
w h d∂Ω−

∫
Ω

[
−

(
∇ϕd

w

)
·
(
∇g d

)
+k2ϕd

w g d
]

dΩ. (1.23)

e boundary condition (1.16c) is substituted into the right-hand side
boundary integral term. e region of integration of the boundary integral
is anged to ∂Ωh , because there is no contribution at ∂Ωg where ϕd

w = 0.
Boundary conditions like these, whi are included in the weak form itself,
are called natural boundary conditions. By contrast, the boundary condi-
tion (1.16b) is enforced directly with the shape functions ϕd and g d . No-
tice that the le-hand side is similar to the integral that includes g d . Su
boundary conditions are called essential boundary conditions.

e right-hand side of the weak form (1.23) contains only known quan-
tities, while in the le-hand side the solution ϕd is unknown. is equation
can be wrien as a matrix vector equation as is shown next.

1.3.3 From discrete weak form to matrix equation

e matrix equation that represents the weak form (1.23) depends on the
oice of the basis of shape functions Ni . is basis is used to approximate
the essential boundary conditions and the solution. e weighing functions
are the basis functions themselves as presented soon. e finite element
method uses a special shape function basis that is ‘nearly orthogonal’ to
make the matrix sparse. e most widely used shape functions are the so-
called Lagrangian shape functions; see figure 1.6 for linear and quadratic
1- examples. Notice that for a given location of the nodes, the functions
are completely defined by the order of the polynomial in the element and
the requirement to be unity at a single node and zero at all other nodes. e
same rules apply to higher dimensional Lagrangian shape functions.

It is convenient to renumber the shape functions to form two groups:
one group contains only shape functions that are zero everywhere on the
boundary with essential boundary conditions and one group with the re-
maining shape functions that are unity somewhere on this boundary. e
first group has indices [1,2, . . . ,n] and the second group [n +1,n +2, . . . ,m].
e approximations of the essential boundary conditions g dand the solution
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Figure 1.6: Lagrangian shape functions for a 1- domain, with ( .) element
edge nodes and ( .) internal nodes. All shape functions equal unity at one
node and zero at all other nodes. Furthermore, they are smooth within the
element, but have discontinuous derivatives at the element edges.

ϕd , and the shape functions ϕd
w now read

g d =
m∑

k=n+1
Nk gk , (1.24a)

ϕd =
n∑

j=1
N jϕ j , (1.24b)

ϕd
w = Ni for i = 1,2, . . . ,n. (1.24c)

Different indices i , j ,k are used to indicate to whi approximation the
shape belongs. e factors gk are known beforehand and the goal is to
find the scalars ϕ j , whi define the  solution. Notice that the weighing
functions are identical to the shape functions for the approximation of the
unknown part of the solution ϕd . is is known as the Galerkin method.
More general finite element methods may use a different interpolation for
the weighing functions.

Substitution of the approximation (1.24) into the weak form (1.23) results
in the matrix equation [

K
]
ϕ⃗= f⃗ . (1.25)

e system matrix K has the entries Ki j that are defined as

Ki j =
∫
Ω

[−(∇Ni
) · (∇N j

)+k2Ni N j
]

dΩ. (1.26)

Since the shape functions are zero in most elements, most entries of the
matrix are zero: K is sparse. e vector ϕ⃗ contains the unknown s ϕ j
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of equation (1.24b). us the scalar field ϕd is reprepresented by a vector.
e arrow over the variable indicates this construction. e system vector
f⃗ contains all knowns: body forces f , essential boundary conditions g (by
means of g j ) and natural boundary conditions h. Its entries are defined as

fi =
∫
Ω

Ni f dΩ−
∫

∂Ωh

Ni h d∂Ω−
m∑

k=n+1
gk

∫
Ω

[− (∇Ni ) · (∇Nk )+k2Ni Nk
]

dΩ.

(1.27)

e above terms are usually calculated by integrating per element and
then summing the contributions of all elements to get the integral over
the complete domain. is integration can be a numerical approximation.
Gaussian quadrature of an order that does not limit the order of convergence
of the  method is typically used.

e solution is calculated by solving equation (1.25) to get ϕ⃗. Solving
requires a factorization of the system matrix K . e computational time for
this factorization depends on the number of s and on the sparsity of the
matrix. erefore, 3- problems are more costly to solve than 2- problems,
even if the total number of s is equal. Furthermore, factorization of two
systems with n s is less costly than factorization of a single system with
2n coupled s.

1.3.4 Structural finite elements and fluid structure
interaction

e viscothermal acoustic finite elements presented in this thesis can be
coupled to structural finite elements. e general concept of fluid structure
interaction modeling with finite elements is described here. e details that
depend on the specific acoustic models are discussed in later apters.

Structural finite elements

In the structural finite element literature, the distinction between a mass
matrix Ms and a stiffness matrix Ks is oen made, whi is convenient in
time dependent problems of the form

∂2

∂t2
[

Ms
]
⃗̌u + [

Ks
]
⃗̌u = ⃗̌fs , (1.28)

where ǔ denotes the time dependent displacement.
Since this thesis describes acoustics in time harmonic form, it is sensible

to use a time harmonic structural formulation as well. is formulation can
be obtained if the structure elements represent linear s, by replacing the
differentiation to time with a multiplication by iω, and the time dependent
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Figure 1.7: Fluid structure interaction, sematically. e acoustic fluid
domain Ωa and the structure domain Ωs interact on the  interface. e
structure domain can be a thin membrane, for example, but is shown as a
solid here for clarity.

displacement ǔ with the complex valued phasor u, and likewise for f̌s → fs .
e displacement u and velocity u̇ formulations now read[

Ks −ω2Ms
]

u⃗ = f⃗s (displacement), (1.29)[
Ks −ω2Ms

]
⃗̇u = iω f⃗s (velocity). (1.30)

As usual, the system vector f⃗s contains the known data: natural boundary
conditions, essential boundary conditions and loads that are applied to the
interior.

Fluid structure interaction

e term fluid structure interaction () is descriptive: the fluid (air) and
the structure influence ea other. e interaction takes place at a surface
that is shared by the two domains, see figure 1.7. e modeling starts with
the weak forms of both the structure and the fluid. Next, the velocity of
the fluid at ∂Ω is prescribed as a function of the unknown structure s.
In the other direction, the load on the structure at ∂Ω is prescribed as
a function of the unknown fluid s. Finally, the step from weak form
to matrix equations can be followed, as presented in the beginning of this
section. In general, the heat conduction in the structure can be coupled to
the thermal effects in the air. However, this thermal coupling is typically
neglected by assuming isothermal walls; see [12].

If an essential boundary condition is used in the coupling, a distinc-
tion between mating meshes and dissimilar meshes needs to be made;
see figure 1.8. In mating meshes, the fluid and the structure have shape
functions that are identical on the  interface. erefore, the essential cou-
pling boundary condition defines a one-to-one coupling between the fluid
and the structure s. In dissimilar meshes, a one-to-one coupling does
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Figure 1.8: Mating meshes have identical shape functions on the  in-
terface for the fluid and the structure. erefore, mating meshes have
one-to-one mating of the s, whi is an advantage in fluid structure
interaction if it uses essential boundary conditions. Dissimilar meshes re-
quire a re-interpolation in that case.

not exist and a re-interpolation between the two domains is necessary. is
thesis does not cover this topic. e distinction in mating and dissimi-
lar meshes is only needed for essential boundary conditions, not if natural
boundary conditions or body forces are prescribed. In those cases, the nu-
merical integration in the assembly of the system matrix by default takes
care of mating the prescribed data to the element to whi it is prescribed,
also if it depends on the s of another domain.

Prescribed data usually appear in the system vector. However, the pre-
scribed data are a function of the degrees of freedom of the other domain
in the case of . It can involve either an essential boundary condition, or
a natural boundary condition or a body source. In any case, it contributes
to the system matrix, because of the dependency on the degrees of freedom.
e complete system matrix can be wrien as[

Sa Fs→a

Fa→s Ss

]{
ϕ⃗

u⃗

}
=

{
f⃗a

f⃗s

}
. (1.31)

where ϕ⃗ contains the fluid s, u⃗ the structure displacement s, Sa is
the acoustic part of the system matrix, Ss = Ks −ω2Ms is the structural part
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of the system matrix, Fs→a represents the body forces and boundary condi-
tions on the acoustics that depend on the structure, and Fa→s represents the
body forces and boundary conditions on the structure that depend on the
acoustics. e system vector still contains the explicitly prescribed body
forces and boundary conditions on the acoustics fa and on the structure
fs . A similar structure results from a formulation with velocity degrees of
freedom for the structure:[

Sa
Fs→a

iω
iωFa→s Ss

]{
ϕ⃗
⃗̇u

}
=

{
f⃗a

iω f⃗s

}
. (1.32)

e above equation and equation (1.31) describe the same problem, but one
or the other may be preferred because it is beer scaled, or because it results
in a symmetric total system matrix.

is thesis studies viscothermal acoustics, that is the formulation of Sa ,
Fs→a and f⃗a in equation (1.31). e remaining sub matrices and vectors
depend on the specific formulation of the structural elements. In section 4.3,
a microphone is modeled with amembrane as the structure. ere, the weak
form of the membrane and the corresponding coupling terms are presented
explicitly.

1.3.5 Notation convention

Only weak forms before discretization are given in this thesis, like in equa-
tion (1.21). is information is sufficient to define the other steps from weak
form to matrix equation if the type of shape functions are mentioned. In all
cases the standard order of numerical integration is used in the assembly of
the system matrix, unless mentioned otherwise.

All finite element results in this thesis are obtained with the finite ele-
ment soware C. is program accepts user defined weak formula-
tions and takes care of the aforementioned approximations.

1.3.6 Summary

e following finite element method topics have been introduced:
• A weak form of a  is derived by multiplication with a test function
and integration over the domain.

• Green’s theorem is applied to reduce the order of the derivatives.

• Natural boundary conditions are included in the weak form itself (af-
ter application of Green’s theorem) and essential boundary conditions
must still be prescribed explicitly.
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• e weak form is discretized by using a linear combination of shape
functions to approximate the solution, the essential boundary condi-
tions and the weighing functions.

• Lagrangian shape functions are unity on a single node and zero on all
other nodes. Furthermore, the functions are continuous and defined
by a polynomial in the element interiors, but have derivatives that are
discontinuous over the element boundaries.

• e derivation of the system matrix from the discrete weak form is
explained. Gaussian quadrature is typically used to calculate the in-
tegrals.

• e sparsity of the systemmatrix depends on theoice of shape func-
tions.

• Structural finite elements are oen defined in a time dependent form
that can be easily reduced to a time harmonic form.

• Fluid structure interaction with the weak forms of the fluid and the
structure results in a matrix equation that has the structure of equa-
tion (1.31).

• Mating meshes are advantageous if essential boundary conditions
are used in fluid structure interaction.

• e computational costs depend both on the number of s (matrix
size) and on the couplings between these s (matrix sparsity).

1.4 Outline

Several viscothermal acoustic finite element models are presented in this
thesis. e theory is divided into two apters. e other apters are more
applied in nature. e outline is as follows.

Chapter 2 presents the ‘full linear Navier-Stokes’ () model. is is
essentially a finite element formulation of the standard viscothermal acous-
tic equations [53, 58] since Kirhoff’s publication [47]. e literature pres-
ents only a few comparable  formulations. e advantages of the for-
mulation presented in this thesis are presented at the end of that apter.
Although one of these advantages is that it is relatively efficient, the major
drawba of the  model is still its high computational cost.

Chapter 3 presents several approximate viscothermal acoustic models,
whi are mu less costly to solve than the  model. is apter in-
troduces an approximating ‘three wave’ framework for viscothermal acous-
tics. e approximation is that one-way coupling between the viscous and
thermal waves at one side and the acoustic wave at the other is used: the
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viscous and thermal wave influence the acoustic wave, but are not influ-
enced by it. Two interesting existing models from the literature are shown
to fit this framework. However, these two models need to satisfy additional
requirements that make their applicability limited to cases that fit these re-
quirements. e first model is called boundary layer impedance () model.
It models only the bulk and accounts for the viscothermal boundary layer
effects by means of a dissipative boundary condition. It is valid if the bulk
region is not small compared to the boundary layer region. e second
model is the low reduced frequency () model. It is valid for waveguides
that have a constant pressure over the cross section. is model lumps the
viscothermal effects over the cross section, resulting in a very efficient prob-
lem of reduced dimensionality (1- or 2-). Besides these existing models, a
new model is presented. is new model is called sequential linear Navier-
Stokes () model. e advantage over the existing models is that it does
not impose any geometric requirements. is model has an efficiency be-
tween the costly  model and the efficient  and  models.

Chapter 4 validates the four viscothermal acoustic models on several
small problems. e models are compared to ea other, to experimen-
tally measured results and to an analytic model. Furthermore, the apter
demonstrates the efficiency and the limits of applicability of the models.
e results confirm the theory and make it more concrete. e paper [43]
contains additional validation tests and is reproduced in appendix B.

Chapter 5 presents an engineering application: a hearing aid loud-
speaker is modeled. It shows how the  models can be used in a design
environment. e focus is on the modeling of the acoustics, not on the other
physical domains. Only the necessary parts are modeled with . Where
possible, more efficient lumped models are used. e apter shows how
the large  calculation can be lumped and coupled to the other efficient
lumped parts of the model. is approa has the advantage that the influ-
ence of the parameters in the lumped parts of the model on the response of
the loudspeaker can be studied without repeating the  calculations.

e conclusions of the thesis and a discussion on interesting possibilities
for future resear are presented in apter 6.

Another thesis on viscothermal acoustics [55] wrien by colleague PhD
candidate M.J.J. Nijhof appears in the same period as this thesis. e de-
velopment of the finite element presented in apter 2 can be regarded as
a joint effort. Furthermore, the benmark problem of section 4.2.3 also
appears in Nijhof’s thesis. Although these topics overlap, the two theses
primarily complement ea other. Nijhof’s thesis focuses on the limits of
(semi-)analytical modeling, contains more mathematical bagrounds and
presents complete and general forms of several viscothermal acoustic mod-
els. is thesis focuses on finite element models and their efficiency, con-
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tains fluid structure interaction and aims to present models that can be read-
ily applied in a design environment.

Some readers may be less interested in the theory behind all models, but
are looking for the best viscothermal acoustic model for a specific applica-
tion. ese readers can start reading in section 3.5 to select a model and
then revert to the section that describes it.



Chapter 2

The full linear Navier-Stokes model

is apter presents the most general model of viscothermal acoustics de-
scribed in this thesis. It consists of the Navier-Stokes equations that are
linearized for small acoustic perturbations. e other models, presented in
the next apter, are approximations of this model. All models are time
harmonic. e governing equations are briefly introduced in section 2.1.
Section 2.2 presents a finite element formulation of the full linear Navier-
Stokes model, whi is referred to with the abbreviation  model in this
thesis.

2.1 Governing equations

e Navier-Stokes equations describe fluid meanics under the contin-
uum assumption. ese equations can be linearized under the assumption
of small acoustic perturbations, presented in section 1.2.2. Subsequently,
the equations are simplified to the time harmonic form, introduced in sec-
tion 1.2.1. e result is a complex valued, coupled set of partial differential
equations in whi the degrees of freedom are complex perturbation ampli-
tudes (phasors) of the field variables. Historically, the first use of the these
equations for viscothermal acoustics is aributed to Kirhoff [47] in 1868.
ese equations form the basis for this thesis. More thorough discussions
of the Navier-Stokes equations for acoustics can be found in Pierce [58] and
Morse [53].

2.1.1 Constitutive equations

e material model for air used in this thesis is a Newton-Fourier ideal gas.
is model is accurate for air under the linear acoustic assumptions; see
for example [53, 58]. Most constitutive equations are given only in time
harmonic form.

23
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Newtonian fluid

A Newtonian fluid model is used to express the stress tensor σ as a function
of the velocity vector field v and the pressure field p :

σ= τ−p I , (2.1a)

τ=λ(∇·v )I +2µε, (2.1b)

ε= 1
2
(∇v + (∇v )T)

, (2.1c)

where τ is the viscous stress tensor in [Pa], I is the identity tensor, ε is the
symmetric part of the velocity gradient (phasor) in [s−1], and µ and λ are the
dynamic viscosity and the second viscosity coefficients respectively, both in
[Pas].

e bulk viscosity η (also called volume viscosity) is directly related to
the dynamic viscosity and the second viscosity by the definition

η≡ 2
3µ+λ. (2.2)

is bulk viscosity quantifies the resistance to the rate of compression and
rarefaction of a volume. e physical phenomenon behind the bulk viscos-
ity is that the thermodynamic equilibrium is not instantaneously reaed;
see [53, 58]. According to Pierce [58], the bulk viscosity η equals zero for
monatomic gases, and for air

η= 0.60µ. (2.3)

e second viscosity can be negative, but the bulk viscosity and the dy-
namic viscosity need to be larger than zero to ensure that their effects are
dissipative:

µ≥ 0, η≥ 0. (2.4)

In general, the viscosity coefficients depend on the state (especially the tem-
perature) of the fluid. However, they are treated as constants in this thesis,
whi is accurate under the linear acoustic assumptions. Discussions on the
bulk viscosity can be found in [27, 44].

Fourier’s law

e heat flow vector q in [W/m2] can be expressed as a function of the
temperature gradient by Fourier’s law of heat conduction:

q =−κ∇T, (2.5)

where κ is the heat conduction coefficient with unit [W/(Km)], whi is
also treated as a constant under the linear acoustic assumptions.
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Ideal gas

Finally, the assumptions of an ideal gas are made. erefore the thermal
and caloric equations of state of an ideal gas are used:

ρ

ρ0
= p

p0
− T

T0
, (2.6)

H =Cp T, (2.7)

where H is the specific enthalpy in [J/kg] and Cp is the specific heat at
constant pressure in [J/(kgK)]. Notice that equation (2.6) is the linearized
version of the well-known ideal gas law

p̌ = ρ̌R0Ť
(
and: p0 = ρ0R0T0

)
, (2.8)

with R0 the specific gas constant in [J/(kgK)].e used notation is described
in section 1.2.1.

Two useful expressions for the isentropic speed of sound c0, in [m/s],
are valid under the the ideal gas assumption:

c20 = γp0/ρ0, c20 = γR0T0. (2.9)

ese expressions are related to ea other through the ideal gas law. e
symbol γ denotes the (dimensionless) ratio of specific heats

γ=Cp /Cv , (2.10)

with Cv the specific heat at constant volume in [J/(kgK)]. For a monatomic
gas γ= 5/3, see [21]; for air γ≈ 1.4. e last useful ideal gas relation is

Cp = R0+Cv . (2.11)

e above ideal gas relations are oen applied throughout this thesis
without explicitly referring to them. e Navier-Stokes equations can also
be used in combination with constitutive equations of a liquid, instead of
an ideal gas. Interested readers can find the eqations for liquids in [34, 55].

Empirical relations for air

In this section, twelve parameters of air have been introduced: p0, T0, ρ0, µ,
λ, η, κ, c0, γ, R0, Cp and Cv . ese parameters depend on the linearization
point. For example, the viscosity depends on the temperature T0. If a model
is compared to an experiment, accurate values for ea of these parame-
ters are needed. However, it would be inconvenient to measure them all.
Instead, a consistent set of coefficients can be obtained by using just three
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measurement−−−−−−−−−→ p0,T0,%h
empirical−−−−−−→
relations

ρ0,c0,µ,κ
constitutive−−−−−−−−→
relations

γ,Cp ,Cv ,R0,λ,η

Figure 2.1: Obtaining a consistent set of coefficients for Newton-Fourier
ideal gases, using measurements, empirical relations and constitutive rela-
tions.

measurements (temperature, pressure and humidity) in combination with
the above constitutive relations and a few additional empirical relations.
Useful empirical relations can be found in Rasmussen [60] for example. His
publication is aimed at air that is not approximated as an ideal gas, for
slightly improved accuracy. Since the ideal gas assumption is used in this
thesis, only a few of the results collected by Rasmussen are needed

e proposed process of obtaining a consistent set of coefficients for
Newton-Fourier ideal gases is sematically shown in figure 2.1. e per-
centage of relative humidity %h (only needed for the empirical relations),
the quiescent pressure p0 and the quiescent temperature T0 are measured,
whi can be done with inexpensive equipment. Next, the empirical re-
lations of Rasmussen [60] are used to obtain the dynamic viscosity µ, the
heat conduction coefficient κ, the speed of sound c0 and the density ρ0.
Last, the remaining variables can be calculated with relations for the viscos-
ity coefficients (2.2) and (2.3), and the ideal gas relations (2.8), (2.9), (2.10)
and (2.11). Using this approa, the viscothermal acoustic models for air
only have three independent material parameters. Table 2.1 lists the consis-
tent set of parameters that is used in this thesis.

2.1.2 Balance laws

While the constitutive equations describe the behavior of a material in
mathematical form, the balance laws describe the general physical laws of
conservation of mass, energy and momentum. e equations in this sec-
tion are given both in the general non-linear form and in the linear time
harmonic form, using the format

general form =⇒ linear time harmonic form.

us ‘=⇒’ implies linearization under the linear acoustic assumptions and
subsequent conversion to the time harmonic from using complex valued
amplitude variables (phasors).

In the general form, the material derivative or convective derivative D
Dt

is used. is derivative is defined in an Eulerian (fixed) coordinate system
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Parameter Symbol Value Unit

Humidity %h 23 %
iescent temperature T0 294.3 K
iescent pressure p0 1.015 ·105 Pa

Speed of sound c0 341.2 m/s
iescent density ρ0 1.225 kg/m3

Heat conduction κ 25.18 ·10−3 W/(mK)
Dynamic viscosity µ 18.29 ·10−6 Pas

Bulk viscosity η 10.98 ·10−6 Pas
Second viscosity λ −1.22 ·10−6 Pas
Ratio of specific heats γ 1.406 1
Specific gas constant R0 281.4 J/(kgK)
Specific heat at constant pressure Cp 975.3 J/(kgK)
Specific heat at constant volume Cv 693.8 J/(kgK)

Table 2.1: A set of parameters that satisfies the Newton-Fourier ideal gas
assumptions.

as

Dϕ̌

Dt
= ∂ϕ̌

∂t
+ v̌ ·∇ϕ̌ =⇒ iωϕ. (2.12)

e linear approximationmay be inaccurate at locations with near zero time
derivative ∂ϕ̌/∂t or exceptionally high gradients ∇ϕ̌. ese occur, for exam-
ple, in standing wave fields and evanescent waves respectively (also in isen-
tropic acoustics). However, these locations are usually very small compared
to the total domain of interest. erefore, Pierce [58] states that the solu-
tions of the linear acoustic equations are not accurate near localized sources
nor for propagation over large distances (accumulation of small errors). De-
spite these shortcomings, these simplifications are oen made. It results in
the isentropic acoustic wave or Helmholtz equation, whi are widely used
and accepted as the standard description of isentropic acoustics. Moreover,
this linearization is also widely used in viscothermal acoustics. Neverthe-
less, phenomena that may be important in some cases are neglected; for
example vortex shedding [5].

Continuity equation

e mass balance or continuity equation states that the time rate of mass
ange within a volume is balanced with the nemass flow over the bound-
ary of that volume. In differential form, this equation reads

Dρ̌

Dt
=−ρ̌∇· v̌ =⇒ iωρ =−ρ0∇·v , (2.13)
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with ρ̌, ρ0, ρ, v̌ and v the total density, quiescent density, density phasor,
total velocity and velocity phasor respectively. e units of the density and
velocity variables are [kg/m3] and [m/s].

Momentum equation

e momentum equation states that the time rate of momentum ange
within a volume equals the ne sum of forces on the volume. In differential
form, this vector equation reads

ρ̌
Dv̌

Dt
=∇· σ̌+ f̌ =⇒ iωρ0v =∇·σ+ f , (2.14)

with σ̌, σ, f̌ , f the total stress tensor, the stress tensor phasor, the total
volumetric body force and the volumetric body force phasor. e units of
the stress tensors and body forces are [Pa] and [N/m3] respectively. Typi-
cally, the body forces equal zero. e stress tensor depends on the medium
and is assumed to satisfy the constitutive equations of a Newtonian fluid,
as presented in section 2.1.1.

Entropy equation

e entropy equation relates time rate of specific entropy ange within a
volume to the ne sum of heat flow over the boundary and heat generation
in the volume. is equation reads

ρ̌Ť
Dš

Dt
= Φ̌−∇· q̌ +Q̌ =⇒ iωρ0T0s =−∇·q +Q, (2.15)

where š, s, Ť , T0, T , q̌ , q Q̌ and Q are the total specific entropy, specific en-
tropy phasor, total temperature, quiescent temperature, temperature phasor,
total heat flow vector, heat flow vector phasor, total volumetric heat source
and volumetric heat source phasor respectively. e units of specific en-
tropy, temperature, heat flux and volumetric heat source are [J/(Kkg)], [K],
[W/m2] and [W/m3] respectively.

e heat flow q is material dependent and can be described by Fourier’s
law as presented in section 2.1.1. e symbol Φ̌ denotes the viscous heating
in [W/m3] whi is defined by Φ̌ = τ̌T : ∇v̌ in whi τ̌ is defined similarly
as τ in equation (2.1b). Because Φ̌ is a small second order term under the
linear acoustic assumptions, it can be neglected. erefore, viscosity only
enters the equations through the stress tensor in the momentum equation.

Notice that all terms in the entropy equation have the unit of rate of
energy ange per volume [W/m3]. It is possible to rewrite the entropy
equation to several equivalent energy equations, for example: total energy,
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internal energy or entropy. e most convenient equation for the viscother-
mal acoustic model of an ideal gas is the enthalpy equation, because then
the caloric equation of state (2.7) can be used. is enthalpy equation can
be derived from the entropy equation by using the Gibbs relation presented
below. e entropy equation is presented here because it demonstrates that
entropy ange equals zero if Φ̌, q̌ and Q̌ equal zero. is requirement is
satisfied if the heat conduction and the viscosity coefficients are zero κ= 0,
µ=∇= 0, whi conforms to the approximations of isentropic acoustics.

Gibbs relation

Besides these conservation laws, the Gibbs relation is needed. is relation
expresses the thermodynamic balance between between entropyange, en-
thalpy ange and pressure ange, see for example [21]:

ρ̌Ť dš = ρ̌dȞ −dp̌ =⇒ ρ0T0s = ρ0H −p. (2.16)

Notice that the isentropic assumption s = 0 in combination with the caloric
equation of state (2.7) reduces the Gibbs relation to the isentropic equation
of state (1.8).

2.1.3 Final set of equations

ebalance laws are combinedwith the constitutive equations to a set in the
osen degrees of freedom, whi are the velocity vector v , the temperature
T and the pressure p . e momentum equation, the entropy equation and
the continuity equation can be wrien as

iωρ0v −∇·σ= f , (2.17a)

iωρ0Cp T +∇·q − iωp =Q, (2.17b)

∇·v − iω
T

T0
+ iω

p

p0
= 0. (2.17c)

e divergence terms are also a function of the osen degrees of freedom:

∇·σ= (λ+µ)∇(∇·v )+µ∆v −∇p, (2.18a)

∇·q =−κ∆T. (2.18b)

is set of equations for viscothermal acoustics contains
• Momentum

}
Acoustics

.
• Compressibility
• Viscosity ⇒ Viscous effects.
• Heat conduction ⇒ ermal effects .
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e assumptions that are made in its derivation include
• Linear acoustic assumptions; see section 1.2.2.
• Newton-Fourier ideal gas assumptions; see section 2.1.1.

Section 2.2 presents a finite element based on this set of equations. It is re-
ferred to as the full linear Navier-Stokes model, or abbreviated  model.

2.1.4 Boundary conditions

e boundary conditions (s) are of great importance in viscothermal
acoustics. Viscous and thermal boundary layers are caused by the pre-
scribed s. In isentropic acoustics, only one  for the pressure or its nor-
mal gradient (related to velocity) has to be given at ea boundary location.
By contrast, three additional s (in 3-) need to be given in viscothermal
acoustics; one thermal  and two viscous s. e thermal  is the tem-
perature perturbation or the heat flux (proportional to the normal tempera-
ture gradient) and the two viscous s are the velocity or stress in the two
directions tangential to the boundary (shear directions).

e acoustic boundary conditions for the  model are

v ·n = ga (normal velocity), (2.19a)

− (σ ·n) ·n = ha (normal stress ≈ pressure), (2.19b)

where n is the outward normal unit vector and ga and ha contain the pre-
scribed values of the normal velocity and normal stress respectively. An im-
pedance boundary condition can be prescribed as ha = Za v ·n. One acoustic
 should be prescribed at ea boundary location; either normal velocity,
normal stress, or impedance.

e thermal boundary conditions of the  model read

T = gh (temperature), (2.20a)

q ·n = hh (heat flux), (2.20b)

where, gh and hh contain the prescribed  values. At ea boundary loca-
tion either the temperature or the heat flux should be prescribed.

Last, the viscous boundary conditions in the  model can be pre-
scribed as

v · t = gv (shear velocity), (2.21a)

− (σ ·n) · t = hv (shear force). (2.21b)

Like above, gv and hv contain the prescribed  values. In 3-, there are two
tangential directions, two tangential unit vectors t and two viscous bound-
ary conditions. At ea boundary location one of the above s should be
prescribed for ea tangential direction.
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Name Symbol Acoustic  Viscous  ermal 

Wall ∂ΩW v ·n = 0 v · t = 0 T = 0
Unit velocity ∂ΩV v ·n = 1 v · t = 0 T = 0
Symmetry ∂ΩS v ·n = 0 (σ ·n) · t = 0 q ·n = 0
Pressure release ∂ΩP0 (σ ·n) ·n = 0 (σ ·n) · t = 0 q ·n = 0
Unit pressure ∂ΩP (σ ·n) ·n = 1 (σ ·n) · t = 0 q ·n = 0

Table 2.2: A few standard boundary conditions. e viscous and thermal
parts of these boundary conditions are all homogeneous.

Typically, homogeneous viscothermal boundary conditions v · t = 0 and
T = 0 are used at walls. However, in slightly rarefied gases, viscothermal
impedance-like boundary conditions are more accurate; see Rathnam [61,
62]. ese can be applied, like the acoustic impedance , as hh = ZhT and
hv = Zv v · t .

Viscous boundary layers are absent if (σ ·n) · t = 0 and likewise, thermal
boundary layers are absent if q ·n = 0. Solutions of problems with only
these viscous and thermal boundary conditions are similar to the isentropic
acoustic solutions.

It is convenient to specify a few standard boundary condition combina-
tions that can be quily referred to. For example, a wall can be defined as
an isothermal zero velocity boundary. e most common boundary condi-
tions are listed in table 2.2. Notice that the viscous and thermal boundary
conditions are all homogeneous in the table. Non-homogeneous viscous or
thermal boundary conditions are used in only few applications.

2.2 Finite element formulation

e set of s (2.17) is used to create a mixed finite element. e weak
form and discretization are presented below. is particular finite element
formulation results in a complex symmetric (not Hermitian)  system
matrix. e element is implemented in the finite element soware C
 [15], whi contains solvers that benefit from the complex symmetry of
the  matrix.

e distinction between essential boundary conditions and natural
boundary conditions is important in , as introduced in section 1.3. e
boundary data ga , gh and gv in the equations above are prescribed as es-
sential s; ha , hh and hv appear as natural s in the weak form derived
next.
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2.2.1 Weak form

e weak form of the set of equations (2.17) can be obtained by using the
Galerkin approa. e equations in this set are multiplied by the weighing
functions vw , Tw and pw respectively, and integrated over the domain Ω.
e entropy equation is divided by the quiescent temperature T0 to make the
system complex symmetric. As usual in , the second order derivatives
(in the terms ∇ ·σ and ∇ · q) are reduced to first order by application of
Green’s theorem (1.20). is results in the anticipated natural boundary
condition terms. e resulting weak form reads

a(vw , v )−⟨∇·vw , p
⟩= ⟨

vw , f
⟩−〈vw ,hav 〉∂Ω , (2.22a)

c(Tw ,T )+ iω

T0

⟨
Tw , p

⟩=− 1
T0

〈Tw ,Q〉+ 1
T0

〈Tw ,hh〉∂Ω , (2.22b)

e(pw , p)−⟨
pw ,∇·v

⟩+ iω

T0

⟨
pw ,T

⟩= 0, (2.22c)

where hav = −σ ·n denotes the vector that contains the values of the pre-
scribed viscous and acoustic natural boundary conditions ha and hv . Fur-
thermore,

a(vw , v ) = iωρ0 〈vw , v〉+2µ〈εw ,ε〉+λ〈∇ ·vw ,∇·v〉 , (2.23a)

c(Tw ,T ) =− iωρ0Cp

T0
〈Tw ,T 〉− κ

T0
〈∇Tw ,∇T 〉 , (2.23b)

e(pw , p) =− iω

p0

⟨
pw , p

⟩
, (2.23c)

where εw is defined like in equation (2.1c) for ε, by replacing v by vw . A
brief notation of the Hermitian inner product is used in the above equations:

⟨
ϕw ,ϕ

⟩≡ ∫
Ω

ϕw ·ϕdΩ,
⟨
ϕw ,ϕ

⟩
∂Ω ≡

∫
∂Ω

ϕw ·ϕd∂Ω, (2.24)

with dummy vector ϕ. In general, the inner product’s subscript denotes the
region of integration, but it is omied if the region is the domain Ω. e in-
ner product is also defined for scalars and tensors for whi the dot product
is replaced by the scalar product and the double dot product respectively.
e line over the variable denotes complex conjugation. Notice that this
complex conjugation is only applied to the real valued weighing functions
in the above weak form. erefore, the conjugation does nothing in this
weak form.

As usual in the Galerkin approa, the weighing functions and corre-
sponding shape functions use the same basis. Still, the basis of p and pw
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matrix Weak term vector Weak term

A a(vw , v) v⃗ nodal v values
B , B T

⟨∇·vw , p
⟩
,
⟨

pw ,∇·v
⟩

T⃗ nodal T values
C c(Tw ,T ) p⃗ nodal p values

D , DT
⟨

Tw , p
⟩
,
⟨

pw ,T
⟩

f⃗
⟨

vw , f
⟩
, 〈vw ,hav 〉∂Ω

E e(pw , p) Q⃗ 〈Tw ,Q〉, 〈Tw ,hh〉∂Ω
Table 2.3: e sub-matrices and sub-vectors in the matrix equation (2.25)
correspond to the weak form (2.22). e essential boundary conditions are
not taken into account yet: ga and hv contribute to f⃗ , and gh to Q⃗ .

can be different than the basis of v and vw , or T and Tw . For any oice, the
‘sesquilinear forms’ a, c and e lead to the complex symmetric sub-matrices
A, C and E in the  system matrix A 0 B

0 C D
B T DT E


v⃗
T⃗
p⃗

=


f⃗
Q⃗
0

 . (2.25)

Table 2.3 shows the correspondence between this matrix equation and the
weak form. e essential boundary conditions eventually also end up in f⃗
and Q⃗ .

e complete systemmatrix is complex symmetric (not Hermitian). Not
considered are the contributions whi the natural boundary conditions and
body forces at the right-hand sides in the weak form (2.22) may make on the
system matrix if they are a function of the s. However, these contribu-
tions are typically either zero, or symmetric.

2.2.2 Discretization

e weak form (2.22) is a mixed formulation: it contains both velocity and
pressure degrees of freedom. It is possible to eliminate the pressure degree
of freedom, but this may lead to an element that ‘los’; see Malinen [51].
is loing phenomenon is related to the incompressibility of the medium.
Clearly, an acoustic medium is compressible by definition, but not easily:
compressing air requires mu more force than shearing it. erefore, an
acoustic medium can be labeled ‘nearly incompressible’. Loing can be
prevented with a mixed formulation, but a careful oice of the shape func-
tions is essential.

Mixed formulations for the incompressible (Navier) Stokes flow are ex-
tensively studied in the literature. e theory focuses on the weak term
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⟨
pw ,∇·v

⟩
, whi is also present in the weak form of viscothermal acous-

tics (2.22): it corresponds to B T in the system matrix (2.25). is term con-
cerns only the velocity and pressure discretizations. erefore, the temper-
ature discretization is not considered yet. In the incompressible case, the
weak continuity equation reads

⟨
pw ,∇·v

⟩ = 0. It is important to enforce
this continuity equation not too weakly and not too strongly. If it is en-
forced too weakly, the finite element has poor convergence. On the other
hand, if the continuity equation is enforced too strongly, the element also
suffers from poor convergence: most velocity s are used to satisfy the
continuity equation and only a few s remain to approximate the mo-
mentum equation. In the extreme, all velocity s are needed to satisfy
the continuity equation, and the finite element los. In nearly compress-
ible media, the loing problem is alleviated, but only slightly [31].

e weighing of the equations can be manipulated in several ways, see
for example Gunzburger [28] for a interesting overview. e only method
considered here is the oice of the shape functions. e combination of
pressure and velocity shape functions has to satisfy the so-called inf-sup
condition, also known as the Babuška-Brezzi condition. Elements that sat-
isfy this condition do not lo and do not suffer from spurious modes (an-
other unwanted phenomenon in whi the pressure does not converge). An
overview of pairs of velocity and pressure shape functions that satisfy this
condition for the Stokes equation can be found in many books and articles,
for example [3, 26, 28]. e Stokes equations can be considered as one of the
limits of the viscothermal acoustics. e other limit of viscothermal acous-
tics is isentropic acoustics for whi Wang [71] used a comparable mixed
form and identical pairs of shape functions. Here, these pairs of shape func-
tions are used to discretize the weak form of viscothermal acoustics (2.22).

e convergence rates of several viscothermal acoustic finite elements
with velocity and pressure shape function pairs that satisfy the inf-sup con-
dition are studied in [43] on a 2- thin gap problem. Good convergence
rates are obtained with these elements. Furthermore, this reference shows
the effect of the temperature shape function (the temperature is not present
in the limit cases: the Stokes equation and isentropic acoustic equations).
e best results were obtained with elements that have quadratic velocity
and temperature shape functions, and linear pressure shape functions. is
is in line with expectations, because the velocity and temperature profiles
both tend to a quadratic shape for thin gaps. Moreover, the weak form con-
tains first order derivatives of both the velocity and the temperature, and
no pressure derivatives.

Of the elements that satisfy the inf-sup condition of the Stokes equation,
the so-called Taylor-Hood elements are very versatile. A similar discretiza-
tion for viscothermal acoustics has second order (that is (bi/tri-)quadratic)
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Velocity and temperature
shape functions

Element
shape

Pressure
shape functions

adratic
3 nodes

. Line . Linear
2 nodes

adratic
6 nodes .

Triangle
.

Linear
3 nodes

Bi-quadratic
9 nodes .

adrilateral
.

Bi-linear
4 nodes

adratic
10 nodes

.
Tetrahedron

.

Linear
4 nodes

Bi-quadratic
18 nodes .

Prism
.

Bi-linear
6 nodes

Tri-quadratic
27 nodes .

Bri
.

Tri-linear
8 nodes

Table 2.4: e Taylor-Hood-like elements with Lagrangian shape func-
tions for several element shapes. e pressure is interpolated with first
order shape functions, while second order shape functions are used for the
temperature and the velocity components.

shape functions for the velocity and temperature and first order (that is
(bi/tri-)linear) continuous pressure shape functions; see table 2.4. e ad-
vantage of the Taylor-Hood-like elements is that many element shapes are
available and these element shapes can be easily combined in a single 
model, for example in boundary layer meshes, see figure 2.2. Su meshes
combine triangle and quadrilateral elements, for example, to provide an ef-
ficient discretization of the viscous and thermal boundary layers. erefore,
the Taylor-Hood-like elements are used for the full linear Navier-Stokes
() model throughout this thesis, unless mentioned otherwise.

Finite elements with pressure shape functions that are discontinuous
over the element boundaries are an interesting alternative to the Taylor-
Hood-like elements. e advantage of these elements is that these have
more pressure degrees of freedom and that these s can be eliminated
at the element level [31]. erefore, the global  system matrix contains
only velocity and temperature s and is relatively efficient to solve. For
quadrilateral and bri element shapes, the combination of bi/tri-quadratic
velocity shape functions and linear (not bi/tri-linear) discontinuous pressure
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(a) 2- mesh. (b) 3- mesh.

Figure 2.2: Boundary layer meshes: (a) 2- mesh with triangle and quadri-
lateral elements, (b) 3- mesh with tetrahedron and prism elements.

shape functions satisfies the inf-sup condition. A viscous acoustic mixed
finite element (without thermal effects) that uses this discretization was
presented by Cheng [14] in 2008. Unfortunately, C currently does
not support linear discontinuous pressure shape functions on quadrilateral
and bri shaped elements. It does support bi/tri-linear discontinuous shape
functions on those elements, but these do not satisfy the inf-sup condition
in combination with the mentioned velocity shape functions.

Another interesting discontinuous pressure element that satisfies the
inf-sup condition is known as the Crouzeix-Raviart [18, 26] element for
the incompressible Stokes equation. ese elements have a triangular or
tetrahedral shape and linear discontinuous pressure shape functions. e
velocity shape functions are quadratic with added bubble functions. e
convergence of the viscothermal acoustic Crouzeix-Raviart-like triangular
finite element (with quadratic temperature shape functions) is also evalu-
ated in [43]. e convergence is comparable to the Taylor-Hood-like ele-
ments in the studied case.

Demonstration: lid-driven cavity flow

e necessity to make a proper oice of the shape functions in a mixed
method, as discussed above, is best illustrated by a simple problem. e lid-
driven cavity flow is a standard benmark problem for the Stokes equation
and is a useful demonstration for the viscothermal acoustic finite elements
as well. e problem is shown in figure 2.3(a). ree fixed walls create a
cavity of 1×1 cm. e upper boundary is a lid that slides harmonically (at
1 Hz) over the cavity. e air in the cavity is moved by the velocity of the
lid and the viscous friction. e prescribed boundary conditions are vy = 0
on every boundary, vx = 0 on the three walls, vx = 1 on the lid. At the
two nodes where the lid meets the walls (indicated by a dot in figure 2.3(a))
vx = 0.5.

e problem is first solved with the Taylor-Hood-like elements on a fine
mesh. is results in the velocity fields shown in figures 2.4(a) and 2.4(b).
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(a) (b) (c)

Figure 2.3: lid-driven cavity flow: a lid slides harmonically over a cavity.
e viscous forces generate a shear velocity in the air in the cavity. (a)
problem, (b) coarse triangular mesh, (c) coarse quadrilateral mesh.

(a) Solution
∣∣vx

∣∣. (b) Solution
∣∣vy

∣∣.
Figure 2.4: Reference solutions of the lid-driven cavity flow problem.

e pressure field has singularities at the corners between lid and wall. If
the elements connected to both corner nodes are of equal size, the rest of the
cavity has a pressure near zero. If these corner elements are not of equal size,
the pressure perturbation has a non-zero value, because the interpolation of
the essential boundary conditions results in a ne inflow and outflow in
su cases.

Next, the reference solution on the fine mesh is compared to solutions
on coarse meshes for several finite element formulations. e used coarse
meshes are shown in figures 2.3(b) and 2.3(c). e quadrilateral mesh is
intentionally deformed slightly. e resulting velocity fields

∣∣vy
∣∣ from the

Taylor-Hood-like viscothermal acoustic elements are shown in figures 2.5(a)
and 2.5(b) for the triangle and quadrilateral meshes respectively. ese re-
sults resemble the reference solution, as expected. Only near the corners,
where the mesh is too coarse to represent the solution, do irregularities ap-
pear.
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(a) Taylor Hood triangle. (b) Taylor Hood quadrilateral.

Figure 2.5: Solution
∣∣vy

∣∣ for the lid-driven cavity flow problem obtained
with Taylor-Hood-like elements.

(a) All quadratic triangle. (b) All quadratic quadrilat-
eral.

Figure 2.6: Solution
∣∣vy

∣∣ for the lid-driven cavity flow problem obtained
with elements that have second order shape functions for all s, includ-
ing the pressure.
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(a) Not mixed triangle. (b) Not mixed quadrilateral.

Figure 2.7: Solution
∣∣vy

∣∣ for the lid-driven cavity flow problemwith a non-
mixed formulation without pressure degree of freedom and second order
shape functions for the temperature and velocity components.

If pressure degrees of freedom are added by using (bi-)quadratic shape
functions instead of (bi-)linear shape functions, the results do not improve,
but become worse. ese results are ploed in figures 2.6(a) and 2.6(b).
e solution of the quadrilateral mesh is useless and the solution of the
triangular mesh still resembles the reference solution, but is poorer than the
solution from the more efficient Taylor-Hood-like elements. e artifacts in
this solution stem from enforcing the continuity equation too strongly.

For a non-mixed formulation, the pressure degree of freedom can be
eliminated from the weak formulation (2.22) by substitution of pw = 0 and
p = T p0/T0− (∇·v )p0/(iω). e resulting reduced weak form is discretized
by (bi-)quadratic shape functions for the velocity components and the tem-
perature. is finite element results in the solutions shown in figure 2.7(a)
and 2.7(b). Again, the solution on the quadrilateral mesh is useless, although
the result is deceptively smooth in this case. e solution on the triangle
mesh roughly resembles the reference solution. However, it is mu poorer
than could be expected from the used mesh. If the mesh is refined, the solu-
tion improves. Joly [38, 36, 37] published good results obtained with similar
non-mixed viscothermal acoustic finite elements. He used fine meshes that
are created with adaptive mesh refinement.

Last, the results of two discontinuous pressure finite elements are eval-
uated. e solution of the Crouzeix-Raviart-like element, shown in fig-
ure 2.8(a), resembles the solution of the Taylor-Hood-like element. By con-
trast, the bi-quadratic velocity and temperature, bi-linear discontinuous
pressure element (9/4-like element) shows a spurious mode in the pressure
field, figure 2.8(b). Nevertheless, the velocity field is calculated accurately
with this 9/4-like finite element (not shown). Unlike the more efficient 9/3
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element (whi uses a linear discontinuous pressure field), the 9/4 element
does not satisfy the inf-sup condition. erefore, problems like the spurious
mode could have been expected.

(a) Crouzeix-Raviart triangle. (b) Pressure of 9/4 quad ele-
ment: spurious mode.

Figure 2.8: Solution for the lid-driven cavity flow problem: (a)
∣∣vy

∣∣ ob-
tained with Crouzeix-Raviart-like elements; (b)

∣∣p∣∣ obtained with elements
with bi-quadratic temperature and velocity components and bi-linear pres-
sure.

e results of the lid-driven cavity flow problem confirm the theory of
nearly incompressible problems. Mixed methods with velocity and pressure
shape function pairs that satisfy the inf-sup condition in the limit cases of
incompressible Stokes flow and isentropic acoustics can be used effectively
for viscothermal acoustic finite elements as well.

2.3 Fluid structure interaction with the FLNS
model

In the  model presented in this apter, three velocity components (in
3-) and the temperature can be coupled to the structure. e structure
may be described with displacement u or velocity u̇ degrees of freedom.
e values at the fluid-structure interface ∂ΩF SI are prescribed as essential
boundary conditions to the  model

v = iωu,

v = u̇,
(essential fluid  at ∂ΩF SI ). (2.26)

e implementation of this essential boundary condition is straightforward
if the fluid and the structure use identical shape functions on the interface
∂ΩF SI ; recall figure 1.8. Since the velocity or displacement of the structure
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is yet unknown, the boundary condition depends on the degrees of freedom.
erefore, the essential boundary condition does not appear in the system
vector, but in the system matrix; in Fs→a of equation (1.31) to be precise.
e second coupling relation is the load of the fluid on the structure. is
load is

fs =−σ ·n (structure load at ∂ΩF SI ), (2.27)

with n the unit vector normal to the boundary, away from the fluid domain,
and fs the load on the structure in the global coordinate system. Because
this load is yet unknown, it ends up in the system matrix in Fa→s of equa-
tion (1.31).

If the structure does not have tangential displacement degrees of free-
dom (a membrane for example), there is clearly no fluid structure interac-
tion in that direction. e tangential boundary conditions of the  model
should be explicitly prescribed in that case, and vt = 0 is typically used. Sec-
tion 4.3 presents an example with membrane elements.

Heat conduction in the structure can also be coupled to the acoustics by
using the temperature of the structure Ts as the essential boundary condi-
tion T = Ts for the fluid at the interface boundary. Furthermore, the heat
flow q ·n is the thermal load on the structure in this case. Nevertheless, as
already mentioned, isothermal T = 0 boundary condition is typically used
in the viscothermal acoustic models instead of a coupled formulation. is
approximation is accurate, because the air can hardly heat the structure in
most cases; see [12].

2.4 Discussion

is apter has introduced the linear time harmonic Navier-Stokes equa-
tions for viscothermal acoustics. e study of these equations started in the
literature with Kirhoff’s paper [47]. All analytic studies of these equations
are limited to simple geometries. e viscothermal acoustic finite element
formulation presented in thisapter offers a numerical alternative for more
complicated geometries.

Comparable numerical viscothermal acoustic models are studied for
 by, for example, Dokumaci [22, 23], Karra [45, 46] and Cutanda
Henríquez [20]. Only the last of these references (from 2002) presents a
 model with both viscous and thermal effects without using restrictive
boundary layer approximations. Comparable viscothermal acoustic 
models are presented by Malinen [51], Cheng [14] and Joly [38, 36, 37]. Ma-
linen’s publication is from 2004, the other references were published aer
the start of this PhD-project. Although the finite element of this apter is
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rather different fromMalinen’s element, his publication has been influential
on its formulation. Malinen identified the viscothermal acoustic problem as
nearly incompressible and used a mixed formulation to get a good conver-
gence rate.

e finite element in this apter has some advantages compared to
Malinen’s formulation. e velocity and temperature are discretized with
quadratic shape functions whi results in smaller errors in narrow geome-
tries [43]. Malinen uses a mixed formulation with a dimensionless density,
instead of the pressure, as the additional degree of freedom. e pressure
is a smoother field and it does not rapidly ange in the boundary layers,
unlike the density field. erefore it is beer suited than the density to
be discretized by the proposed Taylor-Hood-like shape functions. Malinen
uses a different discretization. Moreover, Malinen’s finite element does not
have the preferred natural boundary condition terms and does not yield a
complex symmetric  system matrix.

e finite element formulation of Cheng [14] does not include thermal
effects. Like the finite element presented in this apter, it uses a mixed
formulation (albeit displacement/pressure). By contrast, the element of
Joly [36, 37] does not use a mixed formulation. e convergence rate of
this element is not studied in the mentioned references, but the result in
figure 2.7(a) shows potential problems with it. Nevertheless, the results in
his publication, calculated on a fine mesh obtained with adaptive mesh re-
finement, are good. e adaptive mesh refinement procedure presented by
Joly is valuable to reduce the computational costs.

C has a template of viscothermal acoustic finite elements that is
provided on request. is template uses a formulation that is very similar to
the finite element presented in this apter, although the two formulations
are developed independently. e major advantage of the finite element of
this thesis is that it results in complex symmetric  system matrices. is
reduces the computational time and required memory; again see [43].

Validations of the   model on practical problems, including 3-
and  problems, are presented in apter 4. First, approximate models that
are faster to solve are presented.



Chapter 3

Approximate viscothermal acoustic
models

e full linearized Navier-Stokes model () for viscothermal acoustics
presented in the previous apter requires large computational resources for
solving in comparison with isentropic acoustic models. is becomes clear
by counting the number of coupled fields: five for the  model versus
one (pressure or velocity potential) for isentropic acoustics.

In this apter, three models are presented whi can be solved with
mu lower computational costs than the  model; sometimes even in
the same order of magnitude as isentropic acoustic models. ese models
are an accurate approximation of the  model. Figure 3.1 sematically
shows the approximation: the fully coupled model is approximated as a se-
quential model. e viscous and thermal fields can be calculated without
considering the acoustics. e approximation is accurate because of the dif-
ference between the viscothermal boundary layer thiness and the acoustic
wavelength.

Two models in this apter have been developed by other authors: the
low reduced frequency model () and the boundary layer impedance
model (). e laer abbreviation is not used in the literature, but used
here for brevity. e drawba of these models is their limited applicabil-
ity: the  model is for layers and tubes below the cut-off frequency, and
the  model is for geometries that are large compared to the viscothermal
boundary layer thiness. In this thesis, a new approximate model is pro-
posed, whi does not require any geometrical constraints. It is called the
sequential linearized Navier-Stokes model, . is model is more costly
to solve than the  and  models, but mu less costly than the 
model.

Another difference between the model and the approximatemodels
concerns the boundary conditions. e viscous and thermal boundary con-
ditions of the approximate models are assumed to be homogeneous. is in-
cludes no slip, no shear force, isothermal, adiabatic and impedance-like s.

43
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Acoustic
wave.

Viscous
wave .
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wave

(a) Fully coupled model.

.
.
Acoustic
wave p.

Viscous
wave Ψv .

ermal
wave Ψh

(b) Approximate sequential models.

Figure 3.1: Viscothermal acoustics is a three wave theory. ese waves
are fully coupled in the  model of apter 2 as in (a). By contrast, the
models in this apter are sequential approximations as in (b). e symbols
Ψv and Ψh are used for the viscous and thermal fields in the approximate
models.

Not included are, for example, non-zero shear velocities. Extensions to non-
homogeneous viscothermal boundary conditions are possible, but require
some modifications and extra calculations whi are not dealt with in this
thesis. e acoustic boundary conditions may still be non-homogeneous.

e derivation of the sequential framework whi is common to the
three approximate models is presented in section 3.1. Subsequently, the
three approximate models are presented. e apter ends with a compari-
son of the models in section 3.5. Chapter 4 validates the approximate models
on several benmark problems.

3.1 Common approximations

is section presents the order of magnitude analysis that is common to
ea of the three approximate models in this apter. e analyses are ex-
pressions of the known properties of viscothermal acoustic solutions. e
subsequent approximations in whi small terms are neglected, are based on
the differences between the acoustic wave number k0 versus the viscother-
mal wave numbers kv and kh . Recall the definition of the wave numbers
from equation (1.13):

k0 ≡ω/c0, k2
v ≡−iωρ0/µ, k2

h ≡−iωρ0Cp /κ. (3.1)

e governing viscothermal acoustic equations rewrien in dimensionless
form to make the different orders of magnitude more apparent.
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3.1.1 Dimensionless equations and wave numbers

e magnitude analyses are simplified by switing to the dimensionless
variables, constants and gradient operator defined as

ṽ ≡ v/c0, T̃ ≡ T /T0, p̃ ≡ p/p0, ρ̃ ≡ ρ/ρ0,

k̃v ≡ kv /k0, k̃h ≡ kh/k0, ξ̃≡ 1+λ/µ, ∇̃ ≡ k−1
0 ∇.

(3.2)

Other spatial derivatives are also made dimensionless with the wave num-
ber, like the gradient operator; for example: the dimensionless Laplacian is
∆̃≡ k−2

0 ∆.
e set of linearized Navier-Stokes equations (2.17) rewrien in the

above dimensionless variables reads

ṽ + k̃−2
v ξ̃∇̃(∇̃ · ṽ

)+ k̃−2
v ∆̃ṽ = −∇̃p̃

iγ
, (3.3a)

T̃ + k̃−2
h ∆̃T̃ = γ−1

γ
p̃, (3.3b)

∇̃ · ṽ − i T̃ + i p̃ = 0. (3.3c)

e source terms f and Q are set to zero. Non-zero sources require the
calculation of additional fields, whi is not considered for simplicity. No
approximations have been made in the derivation of this set of equations
from the set (2.17). e values of γ and ξ̃ are near unity for air.

e approximations in this apter are based on two properties of the
dimensionless wave numbers k̃v and k̃h defined in equation (3.2):

1. e viscous and thermal wave numbers have a positive real part
of equal magnitude as the negative imaginary part (since

p−i =
(1− i )/

p
2). is is typical for the time harmonic form of diffusion

equations. Consequently, the viscous and thermal ‘waves’ are highly
damped and form boundary layers.

2. e viscous and thermal boundary layer thinesses are mu smaller
than thewavelength, expressedwith the dimensionless wave numbers
as ∣∣k̃v

∣∣≫ 1,
∣∣k̃h

∣∣≫ 1. (3.4)

ese relations are satisfied for air in the audible frequency band; re-
call figure 1.4.
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Definition of the orders of magnitude

Orders of magnitude based on equation (3.4) are defined in terms of the
dimensionless wave numbers as

O
(
k̃−2
ϕ

)
≪O

(
k̃−1
ϕ

)
≪O (1) ≪O

(
k̃ϕ

)≪O
(
k̃2
ϕ

)
, (3.5)

where the wave number k̃ϕ denotes either k̃v or k̃h , whi are of equal

order of magnitude for air. With respect to unity for example, O
(
k̃−2
ϕ

)
is

called second order small and O
(
k̃ϕ

)
is called first order large.

3.1.2 Order of magnitude analyses

An acoustic domain can be subdivided in a boundary layer region in whi
the viscothermal effects dominate, and a bulk whi can be accurately de-
scribed as isentropic; this was introduced in figure 1.2. ese two regions
are treated separately, because viscothermal acoustic solutions and espe-
cially their spatial derivatives can have very different orders of magnitude
in the boundary layer than in the bulk.

Evanescent waves are not considered in any of the order of magni-
tude analyses. erefore, accuracy near sharp corners and point sources
is likely to be poor. However, the linear acoustic equations are insuffi-
cient here anyway, as described in the discussion about the linearization
of the Navier-Stokes equations in section 2.1.2. e resulting approximate
viscothermal acoustic models are compared to the  model in apter 4
to verify whether disregarding these effects leads to significant errors.

Orders of magnitude in the bulk

e advantage of these dimensionless variables defined by equation (3.2) is
that the temperature, pressure and velocity, and their dimensionless deriva-
tives are of equal order of magnitude in the bulk for an acoustic plane wave.
For acoustic fields that are not a plane wave, two groups can be identified:
variables that are (nearly) in phase with the pressure, and variables that are
(nearly) in phase with the pressure gradient. In ea group, the variables
are still of equal order of magnitude:

T̃ ,∆̃T̃ ,∇̃ · ṽ =O
(
p̃
)

,

ṽ ,∆̃ṽ ,∇̃(∇̃ · ṽ ) =O
(∇̃p̃

)
,

(bulk). (3.6a)

Finally a comparison of the pressure with the pressure gradient is
needed. At all locations, except near nodes of either the pressure or the
pressure gradient, these two are of comparable magnitude:

O
(
p̃

)=O
(∇̃p̃

)
. (3.6b)



3.1. C  47

is equation is invalid near locations where the pressure or pressure gra-
dient vanishes, but the errors at these locations are neglected as mentioned
above.

Isentropic acoustic equations in the bulk

e reduction of the set of equations (3.3) to the isentropic equations is
straightforward because only the two similarities (3.6a) have to be evalu-
ated. All terms containing k̃−2

ϕ are second order small and can be neglected,
resulting in

ṽ = −∇̃p̃

iγ
, T̃ = γ−1

γ
p̃, ∇̃ · ṽ − i T̃ + i p̃ = 0, (bulk). (3.7)

whi are indeed the isentropic acoustic equations, see section 1.2.3, in di-
mensionless form. Substitution of the first two equations into the third
equation for ṽ and T̃ yields the dimensionless acoustic Helmholtz equation
of the pressure:

∆̃p̃ + p̃ = 0 (bulk). (3.8)

e magnitude analysis presented next results in a reduced set of the
viscothermal acoustic equations, whi is valid not only in the bulk, but
also in the boundary layer.

Orders of magnitude in both boundary layer and bulk

e situation in the boundary layer is quite different than in the bulk, owing
to the viscothermal effects caused by the isothermal and no slip boundary
conditions. Within the thin boundary layer, the temperature and the (shear)
velocity rapidly ange from the value in the bulk to zero at the bound-
ary. erefore, temperature and velocity gradients are first order large:
that is k̃ϕ times the variable itself. Furthermore, the Laplacians (second
order derivatives) of these variables are known to be second order large.
e pressure and the pressure gradient are the two variables that remain
relatively smooth over the boundary layer and can be used to express the
magnitudes of the other variables:

T̃ ≤O
(
p̃

)
, ṽ ≤O

(∇̃p̃
)

,

∇̃T̃ ≤O
(
k̃h∇̃p̃

)
, ∇̃ṽ ≤O

(
k̃v p̃

)
,

∆̃T̃ ≤O
(
k̃2

h p̃
)

, ∆̃ṽ ≤O
(
k̃2

v ∇̃p̃
)

,

(boundary layer and bulk). (3.9a)
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e magnitudes of the terms in equation (3.6a) containing the diver-
gence of the velocity can be evaluated using the the continuity equa-
tion (3.3c):

∇̃ · ṽ =O
(
p̃

)
,

∇̃(∇̃ · ṽ ) ≤O
(
k̃h p̃

)
,

(boundary layer and bulk). (3.9b)

Like in the bulk, the pressure and pressure gradient are of comparable
magnitude almost everywhere:

O
(
p̃

)=O
(∇̃p̃

)
. (3.9c)

Governing equations in both boundary layer and bulk

Based on the above orders of magnitude, the set of equations (3.3) can be
simplified. However, now only the term containing ξ̃ is first order small (or
smaller), and can be neglected with respect to the pressure gradient. e
resulting set of equations is

ṽ + k̃−2
v ∆̃ṽ = −∇̃p̃

iγ
, (3.10a)

T̃ + k̃−2
h ∆̃T̃ = γ−1

γ
p̃, (3.10b)

∇̃ · ṽ − i T̃ + i p̃ = 0. (3.10c)

is set contains all terms that are important in the boundary layer and in
the bulk. It is the set of governing equations for this apter. Notice that
the set contains just three dimensionless parameters: k̃v , k̃h and γ.

3.1.3 Approximate viscothermal solutions

e momentum equation (3.10a) and entropy equation (3.10b) both are in-
homogeneous Helmholtz equations. ese equations are solved approxi-
mately for unknown pressure fields in this subsection. e derivations of
both solutions are essentially similar. erefore, only the derivation of the
temperature is presented in detail.

Approximate temperature solution

e temperature in entropy equation (3.10b) can be solved for homogeneous
thermal boundary conditions and a yet unknown pressure field. Su solu-
tions are generally expressed in integral form, involving Green’s functions.
However, in this particular case, the Green’s function of the Helmholtz op-
erator is very local, because of the large negative imaginary part of the wave
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number k̃h . Furthermore, the pressure field is relatively smooth because the
acoustic wavelength is mu larger than the boundary layer thinesses;
see equation (3.4). erefore, an approximate yet accurate solution of the
entropy equation (3.10b) can be wrien as the product

T̃ =Ψh
γ−1
γ

p̃. (3.11)

In this solution, Ψh is a complex valued scalar field that accounts for the
thermal boundary layer effects. In the bulk of the fluid this ‘thermal field’
equals unity and the solution becomes identical to the isentropic acoustic
solution of equation (3.7). Based on the order of magnitude analysis (3.9),
the thermal field Ψh , its gradient and its Laplacian satisfy

Ψh ≤O (1) , ∇̃Ψh ≤O
(
k̃h

)
, ∆̃Ψh ≤O

(
k̃2

h

)
. (3.12)

e solution (3.11) can be verified by substituting it into the entropy
equation (3.10b). is yields, aer division by (γ−1)/γ,[

Ψh + k̃−2
h ∆̃Ψh

]
p̃ + k̃−2

h

[
Ψh∆̃p̃ +2

(∇̃Ψh
) · (∇̃p̃

)]= p̃. (3.13)

e second term in the above result is at least one order smaller than the
first term, and can be neglected. is reduces the equation to[

Ψh + k̃−2
h ∆̃Ψh

]
p̃ = p̃. (3.14)

erefore, equation (3.11) is an approximate solution of the entropy equa-
tion (3.10b) if Ψh satisfies the inhomogeneous 

Ψh + k̃−2
h ∆̃Ψh = 1. (3.15)

Only homogeneous viscothermal boundary conditions are considered
for the models in this apter.¹ e boundary conditions for Ψh can be
derived from these:

T̃ = 0 ⇒ Ψh = 0 (isothermal ), (3.16a)

∇̃n T̃ = 0 ⇒ ∇̃nΨh = −∇̃n p̃

p̃
Ψh (adiabatic ), (3.16b)

⇒ ∇̃nΨh = 0 (approximate adiabatic ). (3.16c)

e homogeneous impedance-like boundary condition and its approxima-
tion may be derived in a similar way.

¹e acoustic boundary conditions (pressure and normal velocity) may be inhomoge-
neous
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e adiabatic boundary condition requires knowledge of (∇̃n p̃)/p̃ for
an accurate prescription. Because this admiance is typically unknown,
the approximate boundary condition is used instead. e approximation in
this boundary condition is based on the magnitude analysis∣∣∣−∇̃n p̃

p̃ Ψh

∣∣∣=O (1) ≪O
(
k̃h

)
, (3.17)

where the last term is the estimate of ∇̃Ψh from equation (3.12).

Approximate shear velocity solution

e velocity solution of the momentum equation (3.10a) is derived in
a similar way as the temperature solution of the entropy equation pre-
sented above. However, the momentum equation is a vector equation. At
this stage, only homogeneous boundary conditions (no-slip, no-force, or
impedance-like) are considered. For this case, the approximate solution of
the momentum equation (3.10a) is

ṽ = −Ψv ∇̃p̃

iγ
, (3.18)

where Ψv is the complex valued scalar ‘viscous field’ that satisfies the in-
homogeneous 

Ψv + k̃−2
v ∆̃Ψv = 1, (3.19)

and the boundary conditions

ṽ = 0 ⇒ Ψv = 0 (no slip ), (3.20a)

∇̃n ṽ = 0 ⇒ ∇̃nΨv = 0 (approximate no shear force ). (3.20b)

e last boundary condition is an approximation, like the adiabatic bound-
ary condition (3.16). e approximate homogeneous impedance-like bound-
ary may be derived similarly. e solution (3.18) can be verified by substi-
tution into the momentum equation (3.10a).

A homogeneous normal velocity boundary condition is assumed, but
the models presented later can also be used with non-homogeneous normal
velocities. erefore the velocity solution (3.18) is accurate for the tangen-
tial (shear) velocity components, but not necessarily for the normal veloc-
ity component. Ea of the models in the remainder of this section uses
a slightly different approa for the normal velocity. erefore, it is not
discussed here, but separately for ea model.
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Approximate continuity equation

e continuity equation (3.3c) can be simplified by substitution of the tem-
perature solution (3.11):

∇̃ · ṽ + iΨ′
h

γ
p̃ = 0, (3.21)

in whi Ψ′
h is the ‘modified thermal field’ defined as

Ψ′
h ≡ γ− (γ−1)Ψh . (3.22)

Furthermore, the dimensionless density is

ρ̃ = Ψ′
h

γ
p̃. (3.23)

is relation follows from the ideal gas law (2.6) and the approximate solu-
tion of the temperature.

3.1.4 Summary of the results in dimensional form

e dimensionless form was convenient for the magnitude analysis, but the
dimensional form is more straightforward for building models. erefore,
the results that have been derived above are summarized here in dimen-
sional form.

e viscous and thermal fields Ψv and Ψh remain dimensionless and
satisfy the dimensional s equivalent to equations (3.19) and (3.15):

Ψϕ+k−2
ϕ ∆Ψϕ = 1 (3.24)

where ϕ stands for v or h. e corresponding boundary conditions are

Ψϕ = 0 (no slip / isothermal ), (3.25a)

∇nΨϕ = 0 (approximate no shear force / adiabatic ). (3.25b)

e modified thermal field Ψ′
h also remains dimensionless:

Ψ′
h ≡ γ− (γ−1)Ψh . (3.26)

Realize that the three viscothermal fields Ψv , Ψh and Ψ′
h all equal unity in

the bulk and for isentropic acoustics.
e derived solutions for the velocity, temperature and density from

equations (3.18), (3.11) and (3.23), are

v = −Ψv∇p

i k0Z0
, T = Ψh p

ρ0Cp
, ρ = Ψ′

h p

c20
. (3.27)
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e velocity solution is accurate for the shear components along the bound-
ary. However, the velocity component perpendicular to the boundary needs
to be revisited for non-homogeneous boundary conditions and accuracy.
is is done separately for ea approximate model in the following sec-
tions. e expression for v closely resembles the isentropic acoustic mo-
mentum equation, or Euler equation, (1.11). Similarly, the expression for T
and ρ resemble the isentropic acoustic constitutive equations (1.8) and (1.7).
e isentropic relations indeed follow if Ψv , Ψh and Ψ′

h all equal unity.
e pressure field still needs to be solved. is can be done with the

continuity equation (3.21):

∇·v + i k0
Z0

Ψ′
h p = 0, (3.28)

whi resembles the isentropic acoustic continuity equation (1.6),
e following sections use the above results to build viscothermal acous-

tic models. e difference between these models is based on the way in
whi the viscothermal fields Ψv and Ψh , and the pressure field p are cal-
culated. Furthermore, the models differ in how the acoustic normal velocity
boundary condition (whi may be non-homogeneous) is applied.

3.2 The boundary layer impedance model

e standard model of time harmonic isentropic acoustics is the Helmholtz
equation. As mentioned, this model does not account for viscothermal ef-
fects and becomes inaccurate if the modeled geometry is not mu larger
than the viscothermal boundary layers. e model presented in this section
was developed by Bossart [10] and can be regarded as a modification of the
isentropic acoustic model. e concept is to include the viscothermal effects
by an impedance boundary condition (). e model still becomes inaccu-
rate if the viscothermal effects increase too mu, but for many applications
it is accurate. For brevity, this model is referred to as the  (boundary layer
impedance) model, although this name is not used in Bossart’s publication.

In 1948, Cremer [17] showed that the reflection of a harmonic plane
wave from a plane boundary can be described by an impedance that de-
pends on the viscothermal coefficients of the medium (air), and the wave’s
angle of incidence. His expression for the impedance is well known and
can be found in, for example [12, 53, 58]. A few years later, Beay [4]
applied this impedance to calculate the viscothermal dissipation in higher
order modes in waveguides. e  model can be regarded as a numerical
method that uses Cremer’s boundary impedance on arbitrary geometries.
A key ingredient of the method is the estimation of the local angle of inci-
dence.
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.
(a)

.
(b)

Figure 3.2: e boundary layer in a tube with side resonator with two ne
diameters. e  model can be used if the boundary layer is relatively
small: (a) may be modeled accurately, (b) not.

In the brief derivation of the  model presented below, Bossart is fol-
lowed and the results of the previous section are used. A more detailed
derivation can be found in Bossart’s original publication [10].

3.2.1 Geometric constraints

e boundary layer impedance model is not accurate for all geometries: the
boundary layers in the geometry should be thin compared to all aracteris-
tic lengths of the geometry. is geometric constraint is rather paradoxical,
because it guarantees accuracy for cases in whi viscothermal effects may
be neglected altogether. However, in practice,  models do yield beer
results than isentropic acoustic models in many cases, see section 4.2.3 for
an example.

Figure 3.2 presents the geometric constraint graphically. In figure 3.2(a),
the boundary layer is thin compared to the bulk everywhere, and the 
model yields accurate results. However, in figure 3.2(b) ne of the resonator
is thinner. In this case, the error in the flow in the ne is larger and the 
model is inaccurate.

3.2.2 Viscous and thermal fields

Analytic expressions for the viscous and thermal fieldsΨv andΨh are used
in the  model. For a plane wall, the  (3.24) has an exact solution that
satisfies the no slip and isothermal boundary conditions (Ψϕ = 0) at the wall,
and the zero shear force and adiabatic boundary conditions (∇nΨϕ = 0) in
the bulk (x⊥ ≫ δϕ):

Ψϕ = 1−e−i kϕx⊥ . (3.29)

As before, ϕ is a dummy variable that should be replaced by v or h for the
viscous and the thermal field respectively. Furthermore, x⊥ is the coordinate
that equals zero on the wall and increases in the direction normal to the
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Figure 3.3: e coordinates, velocity and gradient can be decomposed in
the directions perpendicular and parallel to the boundary, denoted by sub-
scripts ⊥ and ∥ respectively. is decomposition is only needed in the
boundary layer, not in the bulk.

plane wall, see figure 3.3. e above expression becomes inaccurate if the
wall is curved, but fortunately, these errors are either small (smooth curve)
or local (sharp corner). e expression clearly fails if boundary layers at
opposite boundaries overlap, but this case violates the geometric constraints
of the  model.

e shear velocity, temperature and density in the  model satisfy
equation (3.27), with the above expression for the viscous and thermal fields.
is equation is not accurate enough for the perpendicular velocity v⊥, be-
cause it is the only means to account for the viscothermal effects in the 
model. erefore, Cremer’s boundary impedance is used for the perpendic-
ular velocity instead of equation (3.27).

Normal velocity

An accurate expression of the velocity component perpendicular to the
boundary is required in the  model. As shown below, this velocity is a
function of the pressure and can be regarded as an impedance. e deriva-
tion starts with the divergence of the shear velocity from equation (3.27),
whi can be expressed in a form that seems awkward, but proves useful in
the subsequent steps

∇∥ · v∥ =
−Ψv∆∥p

i k0Z0
= ∆⊥p +k2

0p − (Ψv −1)∆∥p

i k0Z0
. (3.30)

e relation ∇∥Ψv = 0 (exact for plane walls), and the acoustic Helmholtz
equation (1.9) in the form ∆∥p =−k2

0p−∆⊥p have been used. e subscripts
∥ and ⊥ are used for the parallel (shear) and perpendicular (normal) direc-
tions respectively; see figure 3.3.² Substitution of the above result into the
continuity equation (3.28), yields

∇⊥ · v⊥ =
∆⊥p + (Ψv −1)k2

∥p + (γ−1)(Ψh −1)k2
0p

−i k0Z0
, (3.31)

²Notice that vn is only defined at the boundary, while v⊥ is also defined in the boundary
layer; a similar difference holds for vt and v∥. Furthermore, vn =−v⊥ at the boundary.
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where ∆∥p = −k2
∥p is used. e coefficient k∥ can be thought of as a yet

unknown acoustic wave number in the direction along the wall. is wave
number is related to the angle of incidence θ, see figure 3.4(a):

k2
∥/k2

0 = sin2θ. (3.32)

Notice that ∇⊥ · v⊥ in equation (3.31) is just ∂v⊥/∂x⊥. erefore, the
velocity perpendicular to the boundary v⊥ results from integration of this
equation over the interval x⊥ = [0, x⊥]; resulting in

v⊥ = −∇⊥p

i k0Z0
−

[
k2
∥

k2
0

k0
kv

Ψv + (γ−1)
k0
kh

Ψh

]
p

Z0
. (3.33)

In the above result, the integration constant is already osen su that the
second term of this result equals zero at x⊥ = 0.

At the location just outside the boundary layer, the viscous and thermal
fields Ψv and Ψh approximately equal unity. e perpendicular velocity
evaluated at this location is

v⊥b = −∇⊥p

i k0Z0
−

[
k2
∥

k2
0

k0
kv

+ (γ−1)
k0
kh

]
p

Z0
. (3.34)

is velocity is applied at the wall in the  model. Figure 3.4(b) shows
that this location is wrong: v⊥b is valid at the dashed line, not at the solid
line. However, this location is only slightly wrong compared to any arac-
teristic length of the geometry, provided that the geometric constraints are
satisfied. e first term in the above expression is the well-known isentropic
acoustic pressure gradient from the Euler equation. is term vanishes at
fixed walls. ere, the second term, whi contains the viscothermal ef-
fects, is more important. Bossart’s method to determine the still unknown
tangential wave number k∥ is presented later.

3.2.3 Acoustic pressure

Because the velocity between the boundary layer and the bulk is applied as
a boundary condition at the wall, the entire domain in the  model can
be modeled with the isentropic acoustic Helmholtz equation that is valid
in the bulk; see figure 3.4(b). Bossart [10] demonstrated the  model for
. Nevertheless, his framework is directly applicable to , as presented
below.
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Figure 3.4: Plane wall reflection of an harmonic plane wave, with incident
wave I , angle of incidence θ and reflected wave R. On the boundary
layer scale, the pressure is nearly uniform. e perpendicular velocity just
outside the boundary layer v⊥b is shown.

FEM for the pressure field

e weak form of the isentropic acoustic Helmholtz equation (1.9) is used
in the  model and reads

k2
0
⟨

pw , p
⟩−⟨∇pw ,∇p

⟩= i k0Z0
⟨

pw ,h
⟩
∂Ω . (3.35)

e symbol h denotes the normal velocity, applied as a natural bound-
ary condition (). is velocity satisfies h =−v⊥b as expressed in equa-
tion (3.34). e pressure gradient term in this equation can be replaced by
thewall’s normal velocity vwall, and the second term contains the significant
viscothermal effects. e natural  now reads

h = vwall+
p

Z0ζ
, (3.36a)

where ζ is the dimensionless impedance caused by the the viscothermal
boundary layer effects:

ζ =
[

k2
∥

k2
0

k0
kv

+ (γ−1)
k0
kh

]−1
. (3.36b)

Bossart’s derivation [10] uses vwall = 0, a fixed wall.
Alternatively, the usual isentropic acoustic boundary conditions can be

prescribed (pressure, normal velocity or impedance).

The tangential wave number

Because initially, the tangential wave number k∥ is unknown, the  model
is first solved with an estimate of this parameter (Bossart suggests k2

∥/k2
0 =
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0.5). Subsequently, this initial pressure solution is used to update the tan-
gential wave number with (recall k2

∥p =−∆∥p)

k2
∥

k2
0
= min

(∣∣∣ (∇∇p):(t1t1+t2t2)
−k2

0p

∣∣∣ ,1
)

, (3.37)

where t1 and t2 are the mutually perpendicular unit vectors tangential to
the boundary surface. In 2- there is only one tangential boundary vec-
tor and the other may be taken as zero. Equation (3.37) should be similar
to equation (3.32) and yield a positive real valued result smaller or equal
to unity. erefore, the absolute value and threshold of unity are used.
Bossart’s publication [10] is unclear on the precise method for calculating
k∥. He may have used a slightly different method than equation (3.37).

adratic  shape functions are used for the pressure field p to permit
the calculation of the tangential wave number (3.37). Linear shape functions
cannot be used, because their second derivatives equal zero. Nevertheless,
quadratic shape functions still give errors because of their C 0 continuity
at the element boundaries.³ A tangential wave number (or equivalently, a
tangential Laplacian) also appears in the viscothermal acoustic  formu-
lation of Cutanda Henríquez [20].

Once the updated wave number has been calculated from the initial
pressure solution with equation (3.37), it can be used in the second and fi-
nal calculation of the pressure field. Nijhof [55] proposes a  model that
calculates the solution with a single pressure calculation. He uses an alter-
native boundary condition that contains the second order spatial derivative
of the pressure.

3.2.4 Fluid structure interaction with the BLI model

Since the  model uses the isentropic acoustic Helmholtz equation, the
fluid structure interaction with the  model is rather similar to fluid struc-
ture interaction with isentropic acoustics. Only the normal velocity and
normal load (pressure) of the two domains are coupled. e temperature
and shear velocities are not coupled, because non-homogeneous boundary
conditions of these variables cannot be prescribed in the  model. e
coupled normal velocity boundary condition on the fluid is

vw al l = iωun ,

vw al l = u̇n ,
(natural fluid  at ∂ΩF SI ), (3.38)

³Interesting resear on smoother shape functions is done by, for example, Hughes [32].
is reference shows general advantages of NURBS (non-uniform rational B-splines) shape
functions in  for the Helmholtz equation.
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where vw all is part of the natural boundary condition of equation (3.36).
Since the normal velocity of the structure either u̇n , or iωun depends on
the unknown structure s, this boundary condition ends up in Fs→a in
the system matrix of equation (1.31). e normal load on the structure,
given as a vector in the global coordinates is

fs = pn (structure load at ∂ΩF SI ), (3.39)

with n the unit vector normal to the boundary, away from the fluid domain.
is coupling term forms Fa→s in the system matrix of equation (1.31).

3.2.5 BLI algorithm

e calculations in the  model are given below, step-by-step
1. Calculate the initial solution of the pressure p with , using the

weak form (3.35), and the natural normal velocity s (3.36) or the
essential pressure s. Use an estimate of k2

∥/k2
0 = 0.5 (proposed by

Bossart [10]) or a beer guess in the normal velocity s. is step
can include .

2. Update the estimate of the tangential wave number k∥ with the solu-
tion from the previous step and equation (3.37).

3. Solve the  problem of the pressure for the second and final time,
but now with the updated tangential wave number k∥ from the pre-
vious step in the normal velocity ’s. is step can include .

4. If needed, calculate the temperature, density and velocity from the
viscous, thermal and pressure fields, using equations (3.29), and (3.27).
If an accurate expression for the perpendicular velocity in the bound-
ary layer is required, use equation (3.33).

3.3 The low reduced frequency model

e Low Reduced Frequency () model describes viscothermal acoustics
in tubes and layers (waveguides) that have a cross section smaller than the
acoustic wavelength (below the cut-off frequency). e  model has two
major assets. First, it covers the complete range from isentropic acoustics to
linearized harmonic Reynolds flow [5], unlike the  model. Second, it is
computationally efficient. e solving time is typically near that of 1- or 2-
 isentropic acoustic waveguide models. Analytic solutions can be derived
for some cases.

According to Tijdeman, whose article [68] is a recommended introduc-
tion to the  model, the origin of the model is Zwikker and Kosten’s
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.
.ℓ

(a) Uniform layer.

.

.ℓ

(b) Cylindrical tube.

Figure 3.5: e uniform layer and cylindrical tube are prototypical geome-
tries for the  model. eir aracteristic length scales ℓ are the thiness
and radius respectively.

book [72] from 1949. Other recommended works on the  model are Belt-
man’s PhD thesis and journal papers [5, 6, 7]. Nijhof [55] presents the 
model in a very general form. Many other authors have wrien articles on
the subject, oen without using the name ‘’ coined by Tijdeman.

is section presents the basic form of the  model with a focus on
two geometries: the uniform layer and the cylindrical tube; see figure 3.5.

3.3.1 Geometric constraints

A decomposition of the coordinates, gradients, velocity and momentum
equation into the, mutually perpendicular, propagation direction and cross
section direction is needed before the geometrical constraints can be stated.
is decomposition of the geometry is listed in table 3.1 for the cylindrical
tube and the uniform layer. e propagation directions are simply the di-
rections in whi wave propagation is assumed: the 2- plane for layers or
the 1- axial direction for tubes. e cross section directions are perpendic-
ular to the propagation directions: the 2- directions on a circle surface for
the cylindrical tube or the 1- direction across the thiness for the layer.
As shown later, the viscous and thermal fields depend only on the cross sec-
tion coordinates, while the pressure field only depends on the propagation
coordinates.

e geometric constraints for the  models especially concern the
cross section geometry’s size. A convenient measure of this size is the hy-
draulic radius, ℓ in [m], defined as

ℓ≡ 2Scd /Pcd , (3.40)

with Scd the cross section surface area and Pcd its perimeter. e hydraulic
radii of the cylindrical tube and the uniform layer are the tube radius and
the layer thiness respectively, as shown in figure 3.5. e advantage of
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Symbol Cylindrical tube Uniform layer

Ω Volume Ωpd ×Ωcd Volume Ωpd ×Ωcd

Ωpd 1- axial line 2- layer plane
Ωcd 2- circle 1- line

∂Ωpd Line endpoints Layer edge
∂Ωcd Circle edge Line endpoints

Table 3.1: Example of the domains and boundaries used in the  model.
e subscripts pd and cd denote propagation direction and cross section
direction respectively.

using the hydraulic radius as the length scale is that it makes all cross sec-
tions behave similarly in the isentropic acoustic limit (for large ℓ or high ω);
expressed later in equation (3.48).

e four assumptions, or requirements, that lead to the  model are
1. e viscous and thermal wave numbers must be mu larger than the

acoustic wave number; see equation (3.4).

2. e cross section must be mu smaller than the acoustic wavelength:

k0ℓ≪ 1. (3.41)

e factor 2π is omied for simplicity.

3. e cross section should be uniform, or slowly varying, su that the
cross section velocity components can be neglected.

4. e length of the geometry in the propagation direction should be
large compared to the boundary layer thiness.

e first requirement is used throughout this apter. e second require-
ment allows an approximation of the pressure as uniform over the cross sec-
tion surface. e dimensionless variable k0ℓ appearing in equation (3.41) is
called the reduced frequency. erefore, the name ‘low reduced frequency
model’ is a statement of the second requirement. e third requirement is
standard in acoustics for waveguides. It ensures that the velocity is mainly
directed in the propagation directions. e fourth requirement is only neces-
sary to make the viscothermal inlet effects negligible. e errors that result
from violation of the third and fourth requirements may be easily compen-
sated by acoustic end corrections in some cases. erefore, some authors
only mention the first two requirements.

3.3.2 Viscous and thermal fields

e derivation presented here is different from the derivation presented by
Tijdeman [68]. is path is osen to clearly show the differences and sim-
ilarities with the sequential linear Navier-Stokes () model. e original
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derivation is briefly presented at the end of this subsection. e final result
of both derivations is of course identical.

e viscous and thermal fields are in general based on the  (3.24).
However, if the cross section geometry is uniform, the viscous and thermal
fields do not vary along the propagation direction and may be calculated for
just one cross section (neglecting effects at the waveguide ends).⁴ Even if
the waveguide cross section is slowly varying, the viscothermal fields may
be calculated for ea cross section independently. is can be stated in the
 (3.24) by neglecting the derivatives in propagation direction:

Ψϕ+k−2
ϕ ∆cdΨϕ = 1. (3.42)

Recall that ϕ is a dummy variable that should be replaced by h or v for
the thermal field or viscous field respectively. Since the propagation direc-
tion is removed from this , it can only satisfy boundary conditions on
the cross section boundary ∂Ωcd . ese boundary conditions are similar to
equation (3.25):

Ψϕ = 0 at ∂Ωcd (no slip / isothermal), (3.43)

∇ncdΨϕ = 0 at ∂Ωcd (no force / adiabatic). (3.44)

Recall that the Neumann boundary conditions are approximations, see
equation (3.16). is approximation is very accurate under the  as-
sumptions, because the pressure is nearly uniform over the cross section,
or ∇n p ≈ 0.

e above problem that defines the viscous and thermal fields can be
solved analytically for all layer and some tube geometries. For the typically
used no slip and isothermal boundary conditions, these solutions are

Ψϕ = 1− cos
(
kϕz

)
cos

(
kϕℓ/2

) with z = [−ℓ/2,ℓ/2] (3.45a)

for layers using thiness coordinate z, and

Ψϕ = 1− J0
(
kϕr

)
J0

(
kϕℓ

) with r = [0,ℓ] (3.45b)

for cylindrical tubes with radial coordinate r . e symbol J denotes the
Bessel function of the first kind.

For uniform waveguides (constant ℓ) the above solutions do not depend
on the propagation coordinates. If the waveguide is not uniform, a solution
can be calculated at ea cross section of interest. Figure 3.6 shows the above

⁴is is comparable to plane strain deformation in meanics.
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(b) Cylindrical tube.

Figure 3.6: Viscous and thermal fields Ψϕ; (a) analytic layer solution of
equation (3.45a), (b) analytic cylindrical tube solution of equation (3.45b);
(. )

∣∣kϕℓ
∣∣= 100, (. )

∣∣kϕℓ
∣∣= 30, (. )

∣∣kϕℓ
∣∣= 10, (. )

∣∣kϕℓ
∣∣= 3.

analytic solutions whi depend on
∣∣kvℓ

∣∣ and ∣∣khℓ
∣∣. e dimensionless pa-

rameter
∣∣kvℓ

∣∣ is named shear wave number by Tijdeman and Beltman. It is a
measure of the amount of viscous effects: a low value means highly viscous,
a high value means nearly isentropic acoustics. Likewise, a dimensionless
thermal wave number may be defined as

∣∣khℓ
∣∣. Both wave numbers are of

comparable size and depend on the frequency ω, on the aracteristic cross
section length scale ℓ and on the parameters of the medium.

Besides the presented solutions for layers and cylindrical tubes, ana-
lytic solutions for rectangular, equilateral triangular and annular tube cross
sections are also available; see appendix A. Furthermore, analytic solutions
of Ψϕ for impedance-like boundary conditions have been presented by Ko-
zlov [49]. Notice that the solution for no shear force and adiabatic boundary
conditions is unity (Ψϕ = 1) over the entire cross section surface Ωcd .

Lumping of the viscothermal fields

e next important step in the  model is to consider only the mean val-
ues of all variables over the cross section (lumping). ese mean values,
expressed by 〈 〉Ωcd are, comparable to equation (3.27),

⟨
vpd

⟩
Ωcd

= −Υv∇pd p

i k0Z0
, 〈T 〉Ωcd = Υh p

ρ0Cp
,

⟨
ρ
⟩
Ωcd

= Υ′
h

c20
p, (3.46a)

where
Υ′

h ≡ γ− (γ−1)Υh (3.46b)
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is the modified mean thermal field. e symbols Υv and Υh are the mean
values of Ψv and Ψh , defined as

Υϕ ≡ ⟨
Ψϕ

⟩
Ωcd

≡ S−1
cd

∫
Ωcd

Ψϕ dΩcd . (3.47a)

e above equation also defines the lumping operator 〈 〉Ωcd . e analytic
expressions of the mean values of the viscous and thermal fields are for
layers

Υϕ = 1− tan
(
kϕℓ/2

)
kϕℓ/2

, (3.47b)

and for cylindrical tubes

Υϕ =− J2
(
kϕℓ

)
J0

(
kϕℓ

) , (3.47c)

where, ϕ is either v or h. Analytic solutions for rectangular, equilateral
triangular, and annular tube cross sections are again listed in appendix A.
Clearly, the mean values of the viscous and thermal fields depend on the
dimensionless parameter kϕℓ discussed above.

Figure 3.7 shows Υϕ versus
∣∣kϕℓ

∣∣, for several geometries. In the isen-
tropic acoustic limit (for high

∣∣kϕℓ
∣∣), the fields Υϕ converge to the asymp-

tote

Υϕ = 1+ 2i

kϕℓ
for

∣∣kϕℓ
∣∣≫ 1 (3.48)

for all cross section geometries. For the geometries shown in figure 3.7, this
asymptote is accurate for

∣∣kϕℓ
∣∣> 10. e low

∣∣kϕℓ
∣∣ asymptote is

Υϕ =−K k2
ϕℓ

2 for
∣∣kϕℓ

∣∣≪ 1, (3.49)

where K is a real valued number that depends on the cross section geometry.
Cummings [19] has presented a discussion on these asymptotes.

FEM for the viscothermal fields

For more complicated tube cross section geometries, the solutions of Ψϕ

may be calculated with finite elements, see for example [16]. Although this
reference does not use the  model, the  calculation of the viscous and
thermal fields is similar. e weak form corresponding to equation (3.42) is

⟨
Ψw ,Ψϕ

⟩
Ωcd

−k−2
ϕ

⟨∇cdΨw ,∇cdΨϕ

⟩
Ωcd

= 〈Ψw ,1〉Ωcd
−k−2

ϕ

⟨
Ψw ,hϕ

⟩
∂Ωcd

,

(3.50)
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Figure 3.7: e mean viscous and thermal fields Υϕ as a function of
∣∣kϕℓ

∣∣
(shear wave number or thermal wave number). Sub-figures (c) and (d)
show the same data as (a) with a presentation that focuses on the asymp-
totes for low and high

∣∣kϕℓ
∣∣. (. ) slit / layer, (. ) circular cross section,

(. ) triangular cross section, (. ) rectangular cross section with aspect
ratio 1/6, (. ) upper limit asymptote of equation (3.48).

with Ψw the weighing functions and Ωcd and ∂Ωcd as given in table 3.1.
adratic Lagrangian shape functions are used for this calculation. e
boundary conditions that can be prescribed at ∂Ωcd are

Ψϕ = 0 (no-slip / isothermal), (3.51a)

hϕ = 0 (no-force / adiabatic), (3.51b)

hϕ = ζ−1ϕ Ψϕ (impedance-like). (3.51c)

e no-force and adiabatic s are typically used to model symmetry.
Figure 3.8 shows the fieldΨϕ calculated by  for a ‘complicated’ tube

cross section geometry at the frequency for whi
∣∣kϕℓ

∣∣= 10. Next, Υϕ can
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Figure 3.8: e viscothermal fields for tubes with complicated cross sec-
tions can be calculated with ; (a) a ‘complicated’ tube (b) the  solu-
tion of Ψϕ for

∣∣kϕℓ
∣∣= 10 and the used mesh.

be calculated with equation (3.47a). Comprehensibly, the results (not shown
in figure 3.7) resemble the curves of the equilateral triangle.

For most cross section geometries, the Υϕ-curves can be fied by calcu-
lating only a few points (that is for a few frequencies). e asymptotes for
high and low values of

∣∣kϕℓ
∣∣ are given by equations (3.48) and (3.49). One

calculation at very low
∣∣kϕℓ

∣∣ suffices to determine K in the equation of the
asymptote. Additionally, a few points in the mid-

∣∣kϕℓ
∣∣ region are needed

to fit the transition between the two asymptotes.

Original derivation

e original derivation is slightly different than presented here. It can be
found in Tijdeman [68]. Very briefly, it starts with a reduction of the set of
s (3.10) with the  requirements, resulting in

vpd +k−2
v ∆cd vpd = −∇pd p

iωρ0
, (3.52a)

T +k−2
h ∆cd T = p

ρ0Cp
, (3.52b)

∇·v/c0− i k0T /T0+ i k0p/p0 = 0. (3.52c)

Now the solutions of T , ρ and vpd in equation (3.27) together with the vis-
cous and thermal fields Ψϕ presented above, are exact solutions of this set
of approximate equations if p is taken uniform over the cross section Ωcd .

3.3.3 Acoustic pressure

epressure  results from the continuity equation (3.28) aer a few steps.
First, the equation is integrated over the cross section area. Second, Gauss’
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divergence theorem (1.19) is applied to the term containing the cross section
velocity. Last, the solution of the propagation velocity (3.46a) is substituted.
e final result is

∇pd · [ScdΥv∇pd p
]+ScdΥv k2

ℓp = i k0Z0ϑcd , (3.53)

with

k2
ℓ ≡ k2

0
Υ′

h

Υv
, (3.54)

ϑcd ≡
∫

∂Ωcd

vcd ·ncd d∂Ωcd , (3.55)

where kℓ is the  wave number in [m−1]. e symbol ϑcd denotes the
volume flow over the cross section boundary ∂Ωcd per unit propagation
area or length in [m/s] for layers and [m2/s] for tubes. Another important
quantity is the aracteristic  impedance Zℓ, defined as

Z 2
ℓ ≡ Z 2

0

Υ′
hΥv

. (3.56)

is impedance can used to rewrite the expression of the velocity in equa-
tion (3.46a) in a form that resembles the isentropic acoustic momentum
equation (1.11) more closely:

⟨
vpd

⟩
Ωcd

= −∇pd p

i kℓZℓ
. (3.57)

Notice that equation (3.53) is similar to Webster’s horn equation, dis-
cussed in for example Pierce [58]. For uniform cross sections, it reduces to
the Helmholtz equation

∆pd p +k2
ℓp = i kℓZℓ

ϑcd

Scd
. (3.58)

Especially if ϑcd = 0, the above equation closely resembles the isentropic
acoustic Helmholtz equation (1.9). Different is that the spatial dimension-
ality is limited to the propagation directions and that the wave number kℓ

is complex, instead of real valued.
Equation (3.58) may be solved analytically in some cases (uniform tubes)

but in general a finite element formulation based on equation (3.53) is ad-
vantageous.
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FEM for the pressure field

While the viscothermal fields Υϕ on the cross section are typically solved
analytically, the pressure field in the propagation coordinates is oen solved
by ; especially if the cross section is not uniform. erefore, the 
formulation is based on equation (3.53) in weak form:

ScdΥv

[
k2
ℓ

⟨
pw , p

⟩
Ωpd

−⟨∇pd pw ,∇pd p
⟩
Ωpd

]
= i k0Z0

[⟨
pw ,ϑcd

⟩
Ωpd

+⟨
pw ,ϑpd

⟩
∂Ωpd

]
, (3.59)

with Ωpd and ∂Ωpd as given in table 3.1. adratic Lagrangian shape func-
tions are used for the pressure.

e term ϑpd results from application of Green’s theorem (1.20) and
denotes a volume flow. It is defined, using equation (3.46a), as

ϑpd ≡ Scd
⟨

vpd ·npd
⟩
Ωcd

. (3.60)

is volume flow has dimension [m3/s] for tubes and [m2/s] for layers: ϑpd

and ϑcd do not have the same dimensions. is is compensated by their
different regions of integration in the weak form.

Fluid structure interaction can be modeled using ϑpd at ∂Ωpd and ϑcd

at ∂Ωcd . Notice that for layers, the integral in ϑcd as described by equa-
tion (3.55) is the difference in the velocity at the top of the layer and the
boom of the layer:

ϑcd = vcd

∣∣∣
z=ℓ/2

−vcd

∣∣∣
z=−ℓ/2

(layers). (3.61)

e  finite element was previously presented by Beltman [5, 8]. Un-
fortunately, his weak form contains an error, resulting in a slight violation
of the volume conservation for layers or tubes with non-uniform thiness.⁵

Cross section velocity

In the derivation of the  model, everything revolved around an accurate
expression for the perpendicular velocity. In the derivation of the model,
by contrast, the related cross section velocity vcd has only been mentioned
to define ϑcd . Nevertheless, all significant viscothermal effects are included.
Looking a bit closer, the derivations are not as different as they may seem
at first sight. e perpendicular velocity in the boundary layer of the 
model has been derived from the expressions of the temperature and the

⁵is error can be corrected by multiplying Beltman’s weak form by B in his notation
(related to Υv ).
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shear velocity. erefore, both the derivation of  model and of the 
model start with the temperature and the shear velocity solutions. ese are
the important variables that determine the perpendicular of cross section
velocity.

In the  model, an accurate expression of the cross section velocity is
not yet derived, because it is not essential for the model. If needed, it may
be derived from the continuity equation in the same way as it was done
for the  model: the temperature and propagation velocity solutions are
substituted and the resulting expression is integrated. An example can be
found in the appendix of [43]. In any case, the cross section velocity is mu
smaller than the propagation velocity and the approximation vcd ≈ 0 is valid
in that respect. In fact, this has been implicitly used in the derivation of 
model by assuming a uniform pressure over the cross section.

3.3.4 Fluid structure interaction with the LRF model

Like in the  model and in isentropic acoustics, the fluid structure inter-
action with the  model only couples the normal velocity and the normal
load of the fluid and the structure. e tangential velocity and tempera-
ture are uncoupled. erefore, the fluid structure interaction is a coupling
with the pressure  calculation (3.59) only; there is no coupling with the
calculation of the viscothermal fields.

e fluid structure interaction is a bit more complicated than in the 
model, because of the lumping over the cross section. e structure can be
located at the end of the waveguide ∂Ωpd (end of a tube for example) or at
the surface of the waveguide ∂Ωcd (above or below the layer for example).

Structure at the waveguide end

If the structure is located at the end of the waveguide, see figure 3.9, the cou-
pling involves the boundary conditions of the waveguide. e fluid struc-
ture interface ∂ΩF SI is typically a surface in the structure model.⁶ is sur-
face is coupled to the boundary ∂Ωpd ,F SI of the  model, whi is a point
for tubes, or an edge for layers. e velocity of the structure is lumped to
ϑpd as in equation (3.60) and applied as a natural boundary condition of the
 weak form (3.59):

ϑpd = iωScd
⟨

u ·npd
⟩
Ωcd

,

ϑpd = Scd
⟨

u̇ ·npd
⟩
Ωcd

,
(natural fluid  at ∂Ωpd ,F SI ), (3.62)

for displacement or velocity s respectively. Recall that ϑpd is a value
in [m3/s] for tubes, while for layers it depends on the pd-coordinates along

⁶It can be a line in axi-symmetric models for example.
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.

.1- tube

.∂Ωpd ,F SI

.∂ΩF SI

(a)  at tube end.

.

.2- layer

.∂ΩF SI.∂Ωpd ,F SI

(b)  at layer edge.

Figure 3.9: Fluid structure interaction with the  model: structure at the
waveguide end. e  interface ∂ΩF SI is shown in gray. (a) tube: 
interface coupled to boundary point of 1- tube; (b) layer:  interface
coupled to boundary edge of 2- layer.

the boundary and has the dimension [m2/s]. In both cases it depends on the
yet unknown s of the structure. erefore, the above equation defines
Fs→a of equation (1.31) aer the weak forms of the fluid and structure are
discretized in the standard manner described in section 1.3. In general, the
velocity profile at the  interface does not mat the local velocity of the
structure. Only the volume velocities over the interfacemat. e potential
errors that are caused by this local velocity mismat are neglected.

e pressure at ∂Ωpd ,F SI is applied as a load on the structure. It has
a uniform value over the cd-direction. is means that the load is uni-
form over the entire surface ∂ΩF SI for tubes, while it depends on the pd-
coordinates for layers. is load in normal direction is

fs = npd p (structure load at ∂ΩF SI ), (3.63)

where npd is the normal vector on the boundary pointing away from the
fluid. e load depends on the yet unknown pressure (s) of the 
model and ends up in Fa→s of equation (1.31).

Structure at the waveguide surface

If the structure is located at the waveguide surface ∂Ωcd , the interaction
with the  model does not involve boundary conditions, but interior
source terms; see figure 3.10. e fluid structure interface ∂ΩF SI interacts
with the interior of the domain on whi the pressure is calculated Ωpd ,F SI ,
whi is a line for the tube and a surface for the layer. e velocity of the
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.1- tube
.Ωpd ,F SI

.∂ΩF SI

(a)  at tube surface.

.

.2- layer

.Ωpd ,F SI

.∂ΩF SI

(b)  at layer surface.

Figure 3.10: Fluid structure interaction with the  model: structure at
the waveguide surface. e  interface ∂ΩF SI is shown in gray. (a) tube:
 interface coupled to interior line of 1- tube; (b) layer:  interface
coupled to interior surface of 2- layer.

structure is lumped to the interior source term ϑcd using equation (3.55):

ϑcd = iω
∫

∂Ωcd

u ·ncd d∂Ωcd ,

ϑcd =
∫

∂Ωcd

u̇ ·ncd d∂Ωcd ,
(fluid source at ∂Ωpd ,F SI ), (3.64)

and is included in the weak form (3.59). Recall that ϑcd depends on the pd-
coordinates and has units [m2/s] for tubes and [m/s] for layers. e lumping
for layers is just the summation of the normal velocities above and below
the layer, like in equation (3.61). In any case, the source term ϑcd depends
on the yet unknown velocity of the structure and ends up in Fs→a of the
total system matrix (1.31).

e load of the fluid on the structure is in normal direction and has
the magnitude of the local pressure p . is pressure depends on the pd-
coordinates and is uniform along the cross section boundary ∂Ωcd . is
can be wrien as

fs = ncd p (structure load at ∂ΩF SI ), (3.65)

with ncd the normal vector at the boundary that points away from the fluid.
Because the load depends on the yet unknown fluid pressure p , the term
ends up in Fa→s of the total system matrix (1.31). e exact formulation
depends on the structure elements that are used.

3.3.5 LRF algorithm

e calculations in the  model are given below step-by-step
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1. Calculate Υv and Υh , the mean values of the viscous and thermal
fields, on ea cross section geometry. is calculation is typically
analytical (see appendix A), but optionally by  for complicated
tube cross sections (equation (3.50)). Use these values to calculate the
 wave number kℓ with equation (3.54).

2. Calculate the pressure field on the propagation geometry, typically by
 for layers and (smoothly) varying tubes (equation (3.59)). For ,
the boundary conditions at the waveguide edge are the natural normal
velocity boundary condition (3.60) involving ϑpd and the essential
pressure boundary condition. is calculation can include .

3. If needed, calculate the temperature, density and propagation velocity
fields from Ψv , Ψh (whi should be calculated first) and p , using
equation (3.27). e cross section velocity approximately equals zero,
but a more accurate expression can be obtained from the continuity
equation.

3.4 The sequential linear Navier-Stokes model

is section presents the sequential linearized Navier-Stokes model ().
Like in the  and  models, the fields Ψh , Ψv and p are sequentially
calculated. Unlike these models, the  model does not require any ge-
ometric assumptions. It only uses the approximations from section 3.1. A
preliminary version of the  model, in whi only the thermal effects are
decoupled, is presented in the conference paper [42].

3.4.1 Viscous and thermal fields

e viscothermal fieldsΨv andΨh are calculated with , based on equa-
tion (3.24). e weak form of this equation is:⟨

Ψw ,Ψϕ

⟩−k−2
ϕ

⟨∇Ψw ,∇Ψϕ

⟩= 〈Ψw ,1〉−k−2
ϕ

⟨
Ψw ,hϕ

⟩
∂Ω

, (3.66)

where Ψw are the weighing functions. e dummy variable ϕ can be re-
placed by v for the viscous field and by h for the thermal field. Unlike in the
 model, equation (3.50), the viscous and thermal fields in the  model
are calculated on the complete 3- geometry.

e boundary conditions for the viscous and thermal fields are:

Ψϕ = 0 (no-slip / isothermal ), (3.67a)

hϕ = 0 (no-shear force / adiabatic ). (3.67b)

For ea of the fields Ψv and Ψh , exactly one of the above boundary con-
ditions has to be prescribed at ea location on the boundary. e no-slip
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and isothermal boundary conditions are essential boundary conditions. Fur-
thermore, the natural no-shear force and adiabatic boundary conditions are
approximations, as explained for equation (3.16).

e temperature, velocity and density are given by equation (3.27), with
the viscothermal fields from the above calculation and a pressure field that
can be calculated with a method that is presented next.

3.4.2 Acoustic pressure

e acoustic pressure  is derived from the continuity equation (3.28).
e weak form of this equation, aer application of Green’s theorem to the
divergence of the velocity, reads

k2
0Ψ

′
h

⟨
pw , p

⟩+ i k0Z0
⟨∇pw , v

⟩= i k0Z0
⟨

pw , v ·n
⟩
∂Ω . (3.68)

e velocity solution of equation (3.27) is substituted into this weak con-
tinuity equation, but only at the le-hand side. e velocity term at the
right-hand side is used to specify natural velocity boundary conditions. e
substitution yields

k2
0Ψ

′
h

⟨
pw , p

⟩−Ψv
⟨∇pw ,∇p

⟩= i k0Z0
⟨

pw , v ·n
⟩
∂Ω . (3.69)

e pressure can be prescribed as an essential boundary condition and the
velocity or impedance as a natural boundary condition.

is concludes the derivation of the  model. Nevertheless, a few
remarks need to be made on the perpendicular velocity.

Perpendicular velocity

e perpendicular velocity in equation (3.27) assumed to be proportional
to the product of the viscous field and the perpendicular pressure gradient:
v⊥ ∝ Ψv∇⊥p . is description is inconsistent in one specific case, when
both

• e no-slip boundary condition Ψv = 0 is prescribed.

• e velocity normal to the boundary is non-zero vn ̸= 0.
is case is typical for fluid structure interaction problems. If the normal
velocity has a finite non-zero value at the boundary where Ψv vanishes
then the pressure gradient should locally go to infinity. However, the ef-
fect of this inconsistency cannot be local because of the  discretization.
It is spread out over the region of the shape functions and weighing func-
tions. Nevertheless, the inconsistency could lead to problems, especially if
the mesh for the pressure calculation is very fine near the concerned bound-
ary. No problems are found regarding the conservation of mass. e incon-
sistency only maers for the pressure and its gradient. Fortunately, the
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.

(a) Piston problem.

.

(b) Squeeze film problem.

Figure 3.11: Two extremes of fluid structure interaction problems. In ‘pis-
ton’ problems, the viscous effects at the piston can be neglected. In ‘squeeze
film’ problems, viscous effects at the moving structure are important and
cannot be neglected, but the errors remain small.

pressure (whi is used in ) is mu less affected than the pressure gra-
dient.

e examples that are presented in apter 4 show that the results of
the  model in whi inconsistency is neglected may be fully acceptable.
Nevertheless, two methods to circumvent or reduce the error are discussed
for the cases that require more accuracy

1. Prescribe the slip boundary condition ∇nΨv = 0.

2. Use a coarse mesh for the pressure calculation.
e first method circumvents the problem, but it is only applicable if the
wave propagates in the direction normal to the vibrating boundary. In this
case the viscous effects at this boundary can be neglected anyway; see equa-
tion (3.33). ermal effects can still be taken into account. is type of
problem is labeled ‘piston-like’; see figure 3.11(a). e method of using slip
s is not applicable in the other extreme: a ‘squeeze film’ problem, see fig-
ure 3.11(b). Interestingly, the errors remain relatively small in this case if no
extra measures are taken, because the normal velocity can be neglected with
respect to the tangential velocity; see section 4.3 for an example. erefore,
a rule of thumb is: use slip-s at the  boundary in piston-like problems.
is rule is validated in section 4.4.

e secondmethod is effective for all types of problems. Since the acous-
tic wavelength is mu larger than the boundary layer thiness, it does
not lead to inaccuracies. Furthermore, it can be recommended to reduce
the computational costs. One issue should not be overlooked: the coarse
mesh method needs a higher order numerical integration to accurately take
the viscothermal fields into account. Its effectiveness in an  problem is
demonstrated in section 4.4. Using a coarse mesh for the pressure calcu-
lation is also beneficial for problems without the normal velocity inconsis-
tency; see section 4.2.3 for an example.

A weak form without the normal velocity inconsistency

e weak form (3.69) could be anged by using another expression for the
normal component (perpendicular component v⊥ to be more precise) of the
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velocity. An accurate expression of this velocity component derived for the
 model is equation (3.33). is equation reduces to the isentropic acoustic
momentum equation (Euler equation) v⊥ =−∇⊥p/(i k0Z0) if the first order
small terms are neglected. With this expression of the perpendicular veloc-
ity, the weak form (3.69) anges to

k2
0Ψ

′
h

⟨
pw , p

⟩−Ψv
⟨∇pw ,∇p

⟩− (1−Ψv )
⟨∇⊥pw ,∇⊥p

⟩= i k0Z0
⟨

pw , v ·n
⟩
∂Ω .

(3.70)
e resear on the  model started with this weak form rather than
with equation (3.69). It does not have the inconsistency and works well if
boundaries are aligned with a coordinate direction. However, the results
were poorer than with the weak form (3.69) in other cases. Small errors
even appeared in problems without fluid structure interaction. e weak
form (3.70) needs a robust implementation of the perpendicular gradient
∇⊥, whi has not been found. erefore, the  model is proposed with
the weak form (3.69). Nevertheless, further resear could consider both
weak forms.

3.4.3 Fluid structure interaction with the SLNS model

Fluid structure interaction with the  model resembles that of isentropic
acoustics: only the normal velocity and load are coupled. e velocity of the
structure is prescribed as a natural boundary condition in equation (3.69) as

v ·n = iωun ,

v ·n = u̇n ,
(natural fluid  at ∂ΩF SI ). (3.71)

Either boundary condition defines the sub-matrix Fs→a in equation (1.31).
e normal load on the structure is the pressure p

fs = pn (structure load at ∂ΩF SI ), (3.72)

where n is the unit vector, normal to the boundary, away from the fluid
domain. is equation defines Fa→s in equation (1.31). e above discussion
on the normal velocity inconsistency applies to this part of the , because
p can become inaccurate at the boundary.

e tangential velocities and temperature are uncoupled like in the other
models in this apter.

3.4.4 SLNS algorithm

e calculations in the  model are given below step-by-step
1. Calculate Ψv and Ψh with , using the weak form (3.66) and the

homogeneous boundary conditions (3.67).
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2. Calculate the pressure field with , using the weak form (3.69) and
the usual acoustic boundary conditions: pressure (essential) or veloc-
ity/impedance (natural), possibly including .

3. If needed, calculate the temperature, density and velocity solutions
from the viscous, thermal and pressure fields; equation (3.27).

3.5 Comparison of the models

Many viscothermal acoustic problems can be modeled with the four models
presented in this thesis. is section discusses and summarizes some general
differences between these models, with a focus on the new  model. e
next apter validates the models and assesses their performance on several
sample problems.

3.5.1 Summary: advantages and disadvantages per model

A brief overview of the advantages (✔) and disadvantages (✘) of ea pre-
sented model is given below.

Full linearized Navier-Stokes model

✔ Direct  implementation of the governing equations, without fur-
ther approximations.

✔ Non-homogeneous viscothermal boundary conditions (like non-zero
shear velocity) and body sources (like heat) can be applied straight-
forwardly.

✔ is model can be regarded as the reference model.

✘ Computationally very costly, especially in 3-: 5 coupled fields, fine
mesh in the boundary layers.

✘ Proper meshing is cumbersome, but important to keep the computa-
tional costs as low as possible.⁷

Boundary layer impedance model

✔ Mu like isentropic acoustics: only the boundary conditions are dif-
ferent.

⁷Joly [37] presents an interesting adaptive mesh refinement procedure for a (slightly
different) viscothermal acoustic finite element.
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✔ Computationally efficient: the pressure field is the only  degree of
freedom and a course mesh may be used because there are no bound-
ary layers to be meshed. e pressure is calculated twice.⁸

✘ Only accurate for problems that are just slightly viscothermal: all
aracteristic lengths of the geometry should be mu larger than the
viscothermal boundary layer thiness.

✘ Requires the tangential wave number (tangential Laplacian of the
pressure field) whi introduces an additional source of error if stan-
dard C 0 continuous shape functions are used.⁹

Low reduced frequency model

✔ Computationally very efficient: viscothermal fields are usually solved
analytically; the pressure field is modeled as 1- or 2- and can be
coarsely meshed in .

✔ Mu resear has proven its accuracy and applicability.

✔ e pressure calculation is mu like an isentropic acoustic calcula-
tion. Furthermore, the isentropic acoustic end corrections can be used
to effectively reduce some common errors; see Nijhof [55].

✘ Only applicable to tubes and layers below the cut-off frequency, with
slowly varying cross sections.

✘ Non-homogeneous viscothermal boundary conditions or body
sources (heat or force) introduce additional fields.

Sequential linearized Navier-Stokes model

✔ Computationally mu more efficient than the  model, but less
efficient than the  and  models: three fields (viscous, thermal
and pressure) are calculated sequentially, on a 3- mesh that is fine in
the boundary layers.¹⁰

✔ e modeled geometry does not need to satisfy geometric constraints
(unlike for the  and  models).

✔ e pressure calculation is mu like an isentropic acoustic calcula-
tion. Acousto-elastic interaction is also modeled similarly.

⁸Nijhof [55] proposes a formulation of the  model in whi only one pressure calcu-
lation is needed.

⁹Cutanda Henríquez viscothermal acoustic  model [20] also contains a tangential
Laplacian.

¹⁰e mesh for the viscous and thermal fields should be fine. e pressure can be calcu-
lated on the same mesh or on a coarser mesh, provided that the numerical integration takes
the viscothermal fields into account, see section 4.2.3.
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✔ e model consists of three uncoupled Helmholtz equations, whi
are thoroughly studied in the literature.¹¹

✘ Non-homogeneous viscothermal boundary conditions or body
sources (heat or force) introduce additional fields.

✘ No-slip boundaries with non-zero normal velocities are inconsistent
and can lead to errors. Fortunately, these errors are typically small.
Moreover, two methods to reduce or circumvent the inconsistency
have been presented.

3.5.2 Discussion: paradigms for the SLNS model

e  model is related to isentropic acoustics and to the other viscother-
mal acoustic models in this thesis (,  and ). erefore, the 
model can be regarded in several ways, ea emphasizing the relation to
one of these other models:

• e  model is an approximation of the  model, based on the
difference between wavelength and boundary layer thiness (equa-
tion (3.4) and figure 1.4).

• e  model is a lumped  model. is lumping process requires
the  geometric constraints. Still, the structure of the two models is
mu alike.

• e  is an isentropic acoustic model in whi the thermal ef-
fects are accounted for by pressure dependent distributed monopole
sources. Likewise, the viscous effects are accounted for by pressure
gradient dependent distributed dipole sources.

• e  model is an  model in whi the effects of the viscous and
thermal fields are lumped to the boundary.

¹¹Only the standard Galerkin method is used in this thesis. e review article of omp-
son [67] is recommended as an introduction to more refined  formulations.





Chapter 4

Validation and performance analyses

is apter presents a selection of tests to demonstrate the validity and
performance of the four viscothermal acoustic models presented in the pre-
vious apters. ese test problems are relatively simple, but illustrative for
the strengths and weaknesses of the different models.

Section 4.1 presents models for waveguide geometries. ese geometries
are accurately described by the  model and the performance of the other
models is compared to it. A few convergence tests show that the  and
 model have a similar performance on identical  meshes, provided
that the pressure field is sufficiently interpolated.

More interesting geometries are modeled in section 4.2: two resonators
for an impedance tube setup. In this section, the four viscothermal acoustic
models (, ,  and ) are compared to measurements. One of the
resonators is best modeled with the  model and the other with the 
model. is section also explores the use of coarser meshes for the pressure
calculation in the  model.

Section 4.3 presents an axi-symmetric microphone model. is model
includes fluid structure interaction with a membrane. e analytic model
listed in Cutanda Henríquez’s thesis [20] models the same problem and is
reused here as an additional reference. It makes an indirect comparisonwith
Cutanda’s  model possible.

e  model contains an inconsistency if a non-zero velocity is pre-
scribed at a no-slip boundary. is inconsistency may lead to inaccuracies
in the  model. Section 4.4 presents a study of these inaccuracies with
fluid structure interaction problems. e proposed methods for improve-
ment are discussed. e apter ends with a summary of the results.

4.1 Waveguides

e first models in this apter describe a 2- slit. e  model accurately
describes these problems, if the thiness of the slit is mu smaller than
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Figure 4.1: e geometry of the slit. Only half the slit is modeled in ,
because the problem is symmetric.

the acoustic wavelength. ere is lile need for the other models for su
geometries. However, the waveguide problem is well suited to show the
convergence of these other models. An important convergence test to val-
idate the  model has already been presented in [43]; see appendix B.
erefore, this section uses a somewhat different approa.

4.1.1 Frequency response of slit near resonance

e geometry of the slit is shown in figure 4.1. e slit has a length of
L = 0.1 m, is closed at the right end and has a unit pressure source at the
le end, see figure 4.1. is figure also shows the coordinate system with
the propagation coordinate x = [−L,0] and the cross section coordinate z =
[−ℓ/2,ℓ/2]. e analytic  solution of the slit problem is

p̂ = cos(kℓx)

cos(kℓL)
, v̂x = Ψv /Υv

i Zℓ

sin(kℓx)

cos(kℓL)
, (4.1)

with the layer solutions of the viscothermal fields Ψv (and Ψh) and the
corresponding mean values Υv (and Υh) as defined for the layer in equa-
tions (3.45a) and (3.47b), and the  wave number kℓ and aracteristic
impedance Zℓ from equations (3.54) and (3.56). e hat on p̂ and v̂x denotes
that it is the reference solution.

Only half the geometry is modeled in the finite element models, because
the solution is symmetric across the line z = 0. e boundary conditions for
the  model are shown in figure 4.1 and are defined in table 2.2. e
corresponding boundary conditions for the  and  models are listed
in table 4.1, where ∇n denotes the gradient in normal direction.

e frequency response curves near the quarter wavelength reso-
nance frequency are shown in figure 4.2 for several slit thinesses: ℓ =
[¼,½,2,16] mm. Two quantities are ploed. e first is the magnitude of
the pressure transfer function, defined as the pressure at the closed end of
the slit divided by the input pressure (of unity) H = p|x=0/p|x=−L . e sec-
ond quantity is the magnitude of the impedance at the open end of the slit
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(a) F versus .
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(b) S versus .
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(c) B versus .

Figure 4.2: Absolute values of pressure transfer function |H | and input
impedance |Z |. e  model is used as the reference with slit thiness
ℓ 16 mm (. ), 2 mm (. ), 0.5 mm (. ), 0.25 mm (. ). e isentropic
acoustic solution is also shown (. ). e  solutions are compared to
(a) the , (b) the  and (c) the  solutions, (. for ea). e 
model underestimates the dissipation if the viscothermal boundary layers
become thier.
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   s  

∂ΩW Ψϕ=0, ∇n p=0 vw al l=0∗
∂ΩS ∇nΨϕ=0, ∇n p=0 ∇n p=0
∂ΩP ∇nΨϕ=0, p=1 p=1

∗ in the  of equation (3.36)

Table 4.1: Boundary conditions for the  and  models that corre-
spond to the  s that are defined in table 2.2.

ℓ [mm]
∣∣kvℓ

∣∣ ∣∣khℓ
∣∣

16 [262,308] [223,262]
2 [33,38] [28,33]
0.5 [8.2,9.6] [7.0,8.2]
0.25 [4.1,4.8] [3.5,4.1]

Table 4.2: Ranges of the shear wave number
∣∣kvℓ

∣∣ and the thermal wave
number

∣∣khℓ
∣∣ corresponding to the used frequency range f = [650,900] Hz

and layer thinesses.

Z = p|x=−L/ϑ|p=−L . e  results are drawn with bla lines. e slit
thiness clearly influences the magnitude of the resonance peak and the
resonance frequency. e gray lines in the figure represent the results from
the ,  and  models. Very good agreement to the  model is
obtained with the  and  models. By contrast, but in line with ex-
pectations, the results of the  model are only accurate for the larger slit
thinesses. Figure 4.2(c) shows a small error for the tube with ℓ = 2 mm
near the resonance frequency. Notice that the shear wave number is approx-
imately 30 at the resonance frequency. is means that the  model con-
tains a noticeable error even before the boundary layers at opposite bound-
aries overlap. However, the error is very small further from the resonance
frequency.

4.1.2 Convergence of the slit problem

A convergence study for the  and  models is presented for the same
slit problem as in the previous sub-section, with ℓ= 2 mm and f = 835 Hz,
whi is near the resonance. e analytic  solutions (4.1) are used as the
reference in the relative error measures that are defined as

ep =
∥∥p − p̂

∥∥∥∥p̂
∥∥ , evx =

∥∥vx − v̂x
∥∥∥∥v̂x

∥∥ , (4.2)



4.1. W 83

. M = 0

. M = 1

. M = 2
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Figure 4.3: Mesh sequences used in the convergence studies: in (a) the
number of elements across the half slit is 2M ; in (b) the largest element is
a factor 2E thier than the smallest element. Only a small part of the slit
length is shown.

with
∥∥ϕ∥∥ ≡

√⟨
ϕ,ϕ

⟩
and

⟨
ϕ,ϕ

⟩
as defined in equation (2.24). ese error

measures quantify the difference with the reference solution (the  model
here).

e results shown in figure 4.2 have been calculated on a fine  mesh.
For the convergence test, several mesh cases are used. ese are subdivided
into two mesh sequences. e first mesh sequence runs with parameter M
from a coarse to a fine mesh, as shown for the first three meshes in fig-
ure 4.3(a). e element length remains 1 mm for eamesh in this sequence
and the element thiness is 2−M mm. e second mesh sequence has 8 el-
ements over the thiness, but the distribution of the element thinesses is
exponential, not uniform; see figure 4.3(b). e ratio of the thiness of the
largest element over the thiness of the smallest element is F , and the mesh
parameter E defines this ratio as F = 2E . e z-coordinates of the element
edges are

z̃n = zn

ℓ/2
= 1− 1−F

n
N−1

1−F
N

N−1
, with n = 0,1, . . . N and F > 1. (4.3)

Here N = 8 for the number of elements. e mesh E = 0 is identical to the
mesh M = 3.

e results for the two mesh sequences and the two error measures are
shown in figure 4.4. For M ≥ 5, the  solution beer converges to the
 solution than the  solution does. e reason is that the  model
has inlet effects at both the open and the closed end of the slit. ese inlet
effects are implicitly neglected in the  and the  models by using
the approximate boundary conditions, see equation 3.16. Furthermore, the
inlet effects that are present in the  model are exaggerated because the
elements are rather long (1 mm). e influence of the viscous boundary
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Figure 4.4: Error in the pressure and velocity fields for the slit problem
at 835 Hz. e meaning of the mesh parameters M and E is shown in
figure 4.3. (. ) model with standard s; (. ) model with vz = 0
s at x = 0 and x =−L; (. ) standard  model; (. )  model with
bi-linear (instead of bi-quadratic) pressure shape functions.

conditions on the  solution can be easily demonstrated by replacing
the zero shear force  by the zero shear velocity  at the entrance and
the closed end of the slit. In this case, the inlet effects are different (but
not absent). e velocity error reduces for these boundary conditions; see
figure 4.4. In any case, differences between the  and  solutions are
small.

e convergence of the mesh sequence with parameter E shows that
the solution can be improved without adding elements by oosing a dis-
tribution with a relatively large number of elements in the boundary layer.
However, this should not be exaggerated. ere is an optimum near E = 4
(F = 16), aer whi the errors increase; see figure 4.4.

e dashed bla line in figure 4.4 shows the convergence for an 
model with first order (instead of second order) Lagrangian shape functions
for the pressure degrees of freedom. e results show that especially the ve-
locity error is larger in this case. is is understandable, because the velocity
solution is reconstructed from the pressure gradient in the  model.

In the convergence study for the  model presented in [43] (ap-
pendix B), the elements are refined in both directions (instead of only in the
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z-direction). In this study, special boundary conditions and body forces and
heat sources are used to ensure that the  solution converges to the 
solution. e convergence rates found in that study conform to the interpo-
lation theory once the number of elements in the boundary layer increases
in a subsequent mesh refinement: evx ∝ h3, with h the aracteristic linear
size of the finite element. e order of convergence of the pressure degree of
freedom is even higher. In figure 4.4, the same convergence rate is obtained
by refining only in the z-direction. Apparently, the mesh is sufficiently fine
in the propagation direction.

4.1.3 3-D cylindrical tube: element aspect ratio

e above results are all obtained with mapped quadrilateral meshes. How-
ever, in many practical problems an unstructured mesh is used. Sometimes
it is possible to create a good boundary layer mesh, but not always. Espe-
cially in 3- it can be troublesome to create an adequate boundary layer
mesh, su as in figure 2.2. en, it may be beneficial to use tetrahedral ele-
ments with a large aspect ratio. e performance of the  model and two
 models with different discretization is tested on a 3- cylindrical tube
problem. e reference solution is again the analytic  solution of equa-
tion (4.1), but now with the round tube viscothermal field solutions from
equations (3.45b) and (3.47c). e frequency is again 835 Hz and the radius
of the circular cross section ℓ= 2 mm. is problem is axi-symmetrical, but
here 3-models are used. Some advantage of symmetry is used bymodeling
only a quarter of the tube.

Parts of the three considered meshes are shown in figure 4.5. e bound-
ary layermesh consist of highly streted prism and bri elements. e two
other meshes are streted tetrahedral meshes with element aspect ratios of
5 and 10 respectively. is aspect ratio is mu smaller than in the bound-
ary layer mesh. e boundary layer mesh has a finer discretization of the
boundary layer than the tetrahedral meshes. erefore, larger errors are
expected in the laer.

Table 4.3 shows the results of the Taylor-Hood-like () and Crouzeix-
Raviart-like ()   formulations and of the  model. For the
boundary layer mesh (a), the  model has a lower error than the -
model. Different than in the previous study, this difference is not caused by
the inlet effects, but by the coarse discretization in the propagation direction
(element length > 8 mm). Using a vt = 0 boundary condition in the 
model does not ange the error, but halving the element length results in a
similar error as for the  model (ep = 3.6 ·10−4 and evx = 8.1 ·10−4). Here,
the higher order pressure interpolation of the  model is advantageous.
Furthermore, the  model is more than 8 times faster to solve than the
 model on the same mesh.
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(a) (b) (c)

Figure 4.5: ree meshes: (a) boundary layer mesh; (b) streted mesh
with aspect ratio 5; (c) streted mesh with aspect ratio 10. Only a small
part of the meshes is shown.

Mesh Model and  # of s tc [s] ep evx

(a)   44.8 ·103 112 7.3 ·10−4 25 ·10−4
(a)  (21.7+10.8) ·103 7+4 3.4 ·10−4 8.3 ·10−4

(b)   114 ·103 55 5.2 ·10−2 5.8 ·10−2
(b)   224 ·103 69 4.9 ·10−2 4.9 ·10−2
(b)  (55.1+27.5) ·103 7+4 5.5 ·10−2 5.9 ·10−2

(c)   59.7 ·103 23 11 ·10−2 11 ·10−2
(c)   117 ·103 39 4.0 ·10−2 4.6 ·10−2
(c)  (28.7+14.4) ·103 3+2 5.3 ·10−2 5.7 ·10−2

Table 4.3: Errors of several  formulations on the meshes of figure 4.5.
e Crouzeix-Raviart-like ()  element and the  model are more
robust in streted meshes than the Taylor-Hood-like ()  element.
e number of s and the calculation time per frequency tc are listed
for comparison.

e errors on the tetrahedral mesh (b) with an element aspect ratio of 5
are similar for ea of the entries in table 4.3. If the elements are streted
further to an aspect ratio of 10, mesh (c), the results are different. e -
 solution deteriorates, while error in the solutions of the other twomod-
els even reduces slightly. e  model and the - formulation are
more robust for streted elements than the - formulation. e larger
number of pressure degrees of freedom in the - and  models is
beneficial. e solving time reduction of the  model versus the 
model is not as large as for mesh (a), because the matrix assembly time is
relatively large in these smaller models.

4.2 Impedance tube samples

e models in the previous section are simple waveguides that have an an-
alytic  solution. ere is no reason to use finite element models for su
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Figure 4.6: An impedance tube. e axial symmetry is indicated by the
center line. is measurement setup consists of three sections: a source,
a measurement section and a sample under test. e tube is drawn with
shorter proportions than in reality, as indicated by the break lines.

geometries, other than for the evaluation of the finite elements themselves.
By contrast, the problems in this section do not have accurate analytic solu-
tions. erefore, a numerical method is needed to find an accurate solution.
e results of the different viscothermal acoustic  models are compared
to ea other and to measurements.

e measurement setup is an impedance tube. is setup and the used
measurement method are presented first. Subsequently, the results of the
viscothermal acoustic models for two impedance tube resonators are pre-
sented. Furthermore, a faster  model that uses a coarse mesh for the
pressure is discussed.

4.2.1 Impedance tube setup

e impedance tube setup is drawn in figure 4.6. It is a tube that is narrow
with respect to the wavelength, but large compared to the viscous and ther-
mal boundary layer thinesses. erefore, the pressure is approximately
uniform on ea tube cross section, while the viscothermal effects are small.
At one end of the tube an acoustic wave is created by a loudspeaker. is
wave travels through the tube and interacts with a sample at the other end
of the tube. Depending on the sample, part of the incoming acoustic energy
is absorbed by viscothermal effects and the rest is reflected ba to the loud-
speaker. Two microphones placed at a known distance from ea other, half
way in the tube, are used to measure the pressure. e absorption coefficient
can be reconstructed from the measured signals.

emethod to calculate the absorption coefficient uses the transfer func-
tion between the two microphones. A S data acquisition system is
used to estimate this transfer function H = p2/p1 with standard spectral
teniques. M’s function ‘resample’ is used to slightly smooth the
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measurement results. Next, the absorption coefficient can be calculated us-
ing:

α= 1−
∣∣∣ e−i k0d−H

H−e i k0d

∣∣∣2 , (4.4)

with d the distance between the two microphones. e absorption coeffi-
cient has a value between 0 (no absorption) and 1 (100% absorption) whi
varies with frequency. Interestingly, in isentropic acoustic models without
radiation, the absorption coefficient equals zero everywhere. Viscothermal
acoustic models are needed to get a non-zero value of the absorption coef-
ficient. erefore, the absorption coefficient is well suited to assess the per-
formance of the viscothermal acoustic models. e two samples presented
next are rigid acoustic resonators.

4.2.2 Jansen’s sample

Jansen made a sample for his master’s project [35] to demonstrate that the
 model is inaccurate for waveguides with rapidly varying cross sections.
e  model and the  model should not have any problems to handle
su geometries. e geometry of Jansen’s sample is shown in figure 4.7(a).
It is made of two turned parts: the outer cylinder and the core. e sample
is modeled with axi-symmetric  models. e used geometry, mesh and
boundary conditions are shown in figure 4.7(b) and are defined in table 2.2
for the  model. As shown in the figure, the viscothermal effects at the
wall of the impedance tube are neglected (∂ΩS rather than ∂ΩW is used).
If these effects were to be taken into account, the mesh needs to be mu
finer at this wall. Corresponding boundary conditions for the  and 
models are given in table 4.1. e  geometry of the  model is the
1- axial line. e cross section at the axial coordinate is lumped at the
corresponding point. e  viscothermal fields on the circular (impedance
tube) and annular (sample) cross sections are given in appendix A. However,
to conform to the other models, the adiabatic slip conditions (Υv = 1,Υh = 1)
are used in the impedance tube; not in the sample of course.

Aer the problem is solved for the frequency range of interest, the ab-
sorption coefficient is calculated as a post-processing step. At ea fre-
quency, the pressure at two points is used to calculate H = p2/p1; see fig-
ure 4.8. e distance between these points is d as shown in the figure. Like
in the experiments, the absorption coefficient follows from equation (4.4).
Figure 4.8 also shows the curved pressure contours in and near the sample,
whi indicate that the  assumptions of uniform pressure on ea cross
section surface are invalid.

e calculated and measured absorption coefficient curves are shown in
figure 4.9. e  model underestimates the absorption coefficient. is
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.Sample core

.Sample outer cylinder

.Impedance tube

(a) Sample cross section

.

.
.∂ΩS

.∂ΩS

.∂ΩP
.∂ΩW

.∂ΩW

(b)  model

Figure 4.7: Jansen’s sample: (a) sematic drawing of the axi-symmetric
cross section; (b)  geometry, mesh and boundary conditions.

.

.

.p1 .p2

.d

Figure 4.8: Pressure magnitude for f = 1.7 kHz. e pressures p1 and p2,
at the indicated locations are used to calculate the absorption coefficient.
Notice that the pressure contours are curved in and near the resonator.

might have been expected, because the heights of the narrowest passages
in the sample are of the same order of magnitude as the boundary layer
thinesses. e  model gives worse results. Both the heights and the
frequencies of the peaks are erroneous. ese errors result from neglecting
the momentum in the radial direction, and the viscothermal boundary layer
effects in the axial direction. ese  assumptions are only accurate in
waveguides with slowly varying cross sections. e error of neglecting the
radial velocity can be compensated for in some cases in isentropic acoustics;
see for example [54] for piecewise conical geometries.

e  model’s absorption curve closely mates the measured curve
in figure 4.9. Furthermore, the results of the  model and the  model
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Figure 4.9: e absorption coefficient of Jansen’s sample: (. ) measure-
ment; (. )  model; (. )  model, partially hidden behind the 
curve; (. )  model; (. )  model.

Model tc [s] # of s

 44 178·103
 6.8 (110+55)·103
 0.7 2×11·103
 0.2 254

Table 4.4: Calculation time per frequency (tc ) and number of s in the
different models for Jansen’s sample. e  and  models use the
same  mesh.

are nearly identical. e same mesh was used for both models. A coarser
mesh is used for the  model, and a 1- mesh for the  model. Neverthe-
less, all used meshes are relatively fine: more careful meshing may reduce
the computational timewithout noticeablyanging the curves in figure 4.9.

e calculation times per frequency are listed in table 4.4. e 
model is approximately six times faster than the  model. is large
reduction in computational time did not compromise accuracy. Even higher
reductions may be expected for large 3- problems. Only the  model
and the  model can be directly compared, because these use the same
mesh. e results of  and  model can only be compared roughly.
Nevertheless, these models clearly have less computational costs.
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Figure 4.10: Photo of Hannink’s sample: twenty tube resonators with dif-
ferent radii and lengths.

Although the model requires the least computational time of the four
models, this time is still relatively large. A mu lower time may have been
expected, because it is a 1- model with a small number of s. e reason
for the relatively long calculation time is that the analytic expression of the
annular cross section requires twenty Hankel function evaluations at ea
integration point; see appendix A. Circular cross sections can be modeled
more efficiently.

4.2.3 Hannink’s sample

e sample in this subsection has 3- features that can only be modeled
accurately with 3- models. e sample is created by Hannink [30] as a
demonstration of broadband absorption with a limited number (twenty) of
tube resonators. ese tubes have different radii and lengths, see the photo
in figure 4.10. Two different meshes are used in the  model: a bound-
ary layer mesh for the  and  models and a coarser mesh for the 
model, see figure 4.11. Like in the previous sample, the viscous effects are
only taken into account on the walls on whi these are important. is is
especially needed in this large 3- model, in order to reduce the computa-
tional costs. Still, the calculations for this sample do not fit on an average
desktop computer: more than 12 GB of  is used for the  calculation.

Figure 4.12 shows the pressure magnitude at f = 1.667 kHz, calculated
with the  model. Some tubes are in resonance depending on the fre-
quency. e absorption coefficient is calculated from the pressure with the
same method as described in section 4.2.2. e resulting absorption coeffi-
cient curves are shown in figure 4.13. is figure also shows the absorption
coefficient curve of a 0- 2-port network  model as described by Van der
Eerden [25]. is model does not take the 3- effects at the tube inlets into
account. Instead, the baffled tube end correction has been used in this 
model: elongation of the tubes with δL = 8r

3π . ese end corrections are not
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.

.
(a) Boundary layer mesh. (b) B mesh.

Figure 4.11: Two meshes are used to model the sample. Viscothermal ef-
fects are only modeled at the dark walls. e boundary layer mesh in (a)
with 4 layers of thin elements along the dark walls is used for the  and
 models. e mesh in (b) does not have these elements and is used in
the  model.

Figure 4.12: Pressure magnitude of Hannink’s sample for f = 1.667 kHz.

Model tc [s] # of s

 1926 584·103
 148 3×141·103
 24 2×54·103
 0.001 22

Table 4.5: Calculation time per frequency and number of s for the
different models of Hannink’s sample. e  and  models use the
same  mesh.

valid in this case, but the results with these end corrections are beer than
without them; see [41]. Figure 4.13 shows that the  model is not very
accurate. Nevertheless, the accuracy may be sufficient. e other models
show curves that are similar to ea other. Moreover, these results agree
beer with the measured absorption coefficient.
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Figure 4.13: e absorption coefficient of Hannink’s sample: (. ) mea-
surement; (. )  model; (. )  model; (. )  model; (. ) 
model.

e computational times per frequency and the number of degrees of
freedom are listed in table 4.5. is  model is very efficient, because it
requires just two s per tube (including the impedance tube). Connected
tubes share a , resulting in a total of 22 s. If the accuracy of the 
model is not acceptable, the  model is the best oice. In this model, the
boundary layers do not need to be meshed, whi results in a mu smaller
number of s and less computational time. e  and  models do
require a fine mesh for the boundary layers; both use the same mesh. Notice
that the  model is approximately thirteen times more efficient than the
 model.

Figure 4.14 shows the results of the  model with viscothermal effects
on all walls to verify the assumptions made in the previous calculations.
Moreover, it contains a number of simulations of another  model. e
idea is to make the pressure calculation more efficient by using a coarser
mesh (the  mesh). is is expected not to increase errors, because the
pressure is smooth across the viscothermal boundary layers. e analytic
 viscothermal field solutions (3.29) are used. erefore, the calculations of
the viscothermal fields are skipped in this ‘coarse ’ model. e pressure
field has to be calculated only once, where two calculations are needed in
the  model. Two results of the coarse  model are shown in figure 4.14.
e first model used standard (fourth) order integration. is results in
an absorption curve that deviates from the other results; see figure 4.14.
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Figure 4.14: e absorption coefficient of Hannink’s sample: (. ) mea-
surement; (. ) standard  model like in figure 4.13; (. )  model with
an impedance on all walls; (. )  model with  mesh and Ψϕ fields
and higher order numerical integration; (. )  model with  mesh
and Ψϕ fields and standard order numerical integration.

Model Integration tc [s] # of s

 standard 24 2×54 ·103
Coarse  standard 13 54 ·103
Coarse  finer 21 54 ·103

Table 4.6: Calculation time per frequency and number of s for the
different models of Hannink’s sample. e modified  model with finer
integration is approximately as efficient as the  model.

e standard order numerical integration in the assembly of the  matrix
is incapable to accurately capture the thin boundary layer profiles of the
viscothermal fields on this coarse mesh. erefore, the second model uses a
higher (eighth) order integration, while everything else is equal. e figure
shows that this model yields a similar absorption curve as the other models.
erefore, it is possible to use a coarse mesh for the pressure calculation,
provided that the order of the numerical integration is sufficient to capture
the boundary layer profile.

Table 4.6 compares the efficiency of the coarse  models to the 
model. For standard integration, the  model is almost twice as effi-
cient, because only one pressure calculation is needed in the  model
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versus two for the  model. Standard integration is insufficient and un-
fortunately, the higher order of integration consumes almost all the gained
computational time. Nevertheless, the fine integration is only required for
elements that coincide with the boundary layers. If somehow the order of
integration of only the elements in the boundary layer is increased by an
appropriate amount, the modified  model may be a more efficient al-
ternative to the  model. Moreover, the  model is more generally
applicable. In the presented coarse  model, the viscothermal fields are
determined by the analytic expression of the  model. e numerical 
calculation can be used if this analytic expression is inaccurate.

4.3 Condenser microphone

A condenser microphone is modeled with the viscothermal acoustic finite
element models in this section. is problem contains fluid structure inter-
action with a membrane as the structure. Several variations of this problem
are studied in the literature; see for example [20, 45, 50, 59]. All these refer-
ences model the microphone axi-symmetrically.

Figure 4.15(a) shows the most basic geometry for a condenser micro-
phone: a round flexible membrane and round rigid baplate of the same
size enclose a thin air layer of uniform thiness. is 3- geometry can be
modeled as a 2- axi-symmetric problem, see figure 4.15(b). As indicated in
this figure, a pressure release boundary condition is used at the edge ∂ΩP0

of the air layer. e other prescribed boundary conditions are the wall and
symmetry s; see table 2.2. Furthermore, at ∂Ωm a fluid structure interac-
tion boundary condition is used, whi is explained later.

.

.Axis

.
Rigid

baplate

.
Flexible

membrane

(a) Sematic 3- view.

.

.Pm at ∂Ωm

.p .∂ΩP0

.∂ΩW

.∂ΩS

(b) Axi-symmetric model.

Figure 4.15: Condenser microphone (a) and axi-symmetric model (b). e
air layer between membrane and baplate is mu thinner than drawn
here. emeasured pressure Pm above themembrane is assumed to be uni-
form. e boundary conditions are shown in (b) and ∂Ωm is the boundary
with the membrane.
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4.3.1 Membrane model

e membrane, like the acoustics, is modeled with a time harmonic finite
element formulation. e displacement of a flexible membrane can be de-
scribed by a wave equation, see for example [53]. In time harmonic form,
this simplifies to

∇· (σm∇u̇)+ω2ρmu̇ = iω
(
Pm −p

)
, (4.5)

with normal membrane velocity u̇ in [m/s], the membrane mass per unit
surface ρm [kg/m2], the membrane tension σm [N/m], the uniform pressure
acting on the upper side of the membrane Pm [Pa], and the pressure in the
air gap between the membrane and the baplate p [Pa]. e variables pa ,
Pm and u̇ are complex magnitudes, or phasors.

For uniform tension, the above equation reduces to the Helmholtz equa-
tion with the wave number km [m−1] defined as

k2
m = ω2ρm

σm
. (4.6)

e weak form of equation (4.5) and of the mentioned Helmholtz equation
is

−σm 〈∇u̇w ,∇u̇〉∂Ωm
+σmk2

m 〈u̇w , u̇〉∂Ωm

= iω
⟨

u̇w ,Pm −p
⟩
∂Ωm

−σm 〈u̇w ,hm〉∂2Ωm
, (4.7)

with ∂Ωm the boundary of the acoustic domainΩ onwhi themembrane is
present. e symbol ∂2Ωm denotes the boundary of the membrane. Further-
more, u̇w is the weighing function and hm = ∇nu̇ is the natural boundary
condition whi can be used to prescribe the angular velocity perturbation
of the membrane: hm = 0 at the center of the membrane (r = 0). At the
edge of the membrane (r = Rm), the essential u̇ = 0 boundary condition is
prescribed. adratic shape functions are used for u̇ (and u̇w ) in the finite
elements of the membrane.

e weak form of the membrane (4.7) is multiplied by −ρ0 (quiescent
density of air). is makes the coupled finite element formulation complex
symmetric if the  or  model is used for the acoustics. e involved
coupling terms are iωρ0

⟨
u̇w , p

⟩
∂Ωm

in the weak form of the membrane and
iωρ0

⟨
pw , u̇

⟩
∂Ωm

in the weak form of the  or  model. e problem is
not symmetric if the acoustics is modeled by the  model. In that case,
the velocity of the membrane is prescribed as an essential boundary con-
dition of the  model. Mating meshes are used on the fluid structure
interface as in figure 1.8(a).
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Name Symbol Value Unit

Radius of membrane Rm 2 mm
Air layer thiness ℓ 18 μm
Membrane tension σm 3128 N/m
Membrane mass per unit surface ρm 0.0577 kg/m2

Membrane thiness 6.95 μm

Table 4.7: Parameters for the microphone model, based on the B&K 4938
microphone described by Cutanda Henríquez [20].

4.3.2 Results

e signal measured by the microphone is proportional to the membrane
deflection, whi is caused by the pressure Pm . erefore, the microphone
sensitivity H can be defined as the mean deflection of the membrane per
unit input pressure:

H =
⟨

u̇

iωPm

⟩
∂Ωm

= 2
iωPmR2

m

Rm∫
0

u̇r dr, (4.8)

with Rm the radius of the membrane. It can be multiplied with the mem-
brane surface if membranes with different radii are compared. Moreover,
if the baplate is not the same size as the membrane, a sensitivity measure
may be defined inwhi themembrane deflection is only integrated over the
surface above the baplate. Nevertheless, the sensitivity of equation (4.8)
is sufficient for the comparisons in this thesis.

e air parameters in table 2.1 are used in the microphone model. e
other parameters are given in table 4.7. ese parameters are based on the
B&K 4938 microphone model presented by Cutanda Henríquez [20]. In the
simplemodel of figure 4.15(b), the baplate has the same radius as themem-
brane, but in the real microphone, the baplate is smaller. ese differences
are not important in the present study inwhi several models are compared
to ea other. e M code of Plantier’s analytic model [59], whi is
listed in the appendix of Cutanda Henríquez’ thesis [20] is used as an addi-
tional reference. is code is anged to use the air parameters of table 2.1.

e sensitivity as a function of the frequency is calculated with the
axi-symmetric ,  and   formulations and with the analytic
model. e results are normalized on the sensitivity of the analytic model
at the lowest frequency and ploed in figure 4.16. e membrane displace-
ment of the analytic model, whi is calculated for several discrete values
of the radial coordinate, is integrated with the trapezoid rule to obtain the
sensitivity. A  model is not compared in this figure, because of the shear
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Figure 4.16: e normalized sensitivity of the microphone. (. ) analytic
model, (3× . ) ,  and  models. e difference between the
models is smaller than the line thiness at the scale of this plot.

wave number
∣∣kvℓ

∣∣ ≤ 2 in the considered frequency range. At su low
shear wave numbers, the boundary layers of opposing boundaries overlap,
see figure 3.6(a), and the geometric constraints of the  model are not
valid. e result in figure 4.16 shows that the sensitivity curves calculated
by the ,  and  models agree perfectly with ea other and with
the analytic model. ese results are beer than the results that Cutanda
Henríquez presented for his viscothermal acoustic  model [20].

e differences between the models is not visible in figure 4.16, despite
the inconsistency in the normal velocity in the  model at fluid structure
interaction boundaries. A second plot is made to further investigate this
error in the  model. In this plot, shown in figure 4.17, the mean pressure
on the membrane (at ∂Ωm) is calculated and compared between the models.
ese results are also accurate for the  model: the differences are again
invisible at the scale of the plot.

e calculation times per frequency tc of the different models are listed
in table 4.8. e  model is more than two times faster than the 
model, and both require less than a second for this simple problem. e dif-
ference is relatively small, because the time to assemble the systemmatrices
is included. e  model and the analytic model are mu faster. In the
analytic model, most time is used to evaluate the solution on all grid points.
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Figure 4.17: e mean pressure in the air layer at the membrane per unit
Pm . (. ) analytic model, (3× . ) ,  and  models. e differ-
ence between the models is not visible at the scale of this plot, although
the no-slip  boundary condition is used in the  model.

Model tc [s] # of s

 0.60 7440
 0.25 4422+2412
 0.01 402
Analytic 0.02

Table 4.8: Calculation times for the microphone models. In the analytic
model 5 modes are taken into account and a grid of 101 radial by 15 axial
points is used.

4.3.3 Microphone 2

A slightly more complicated microphone geometry is modeled as a demon-
stration. e baplate is curved (quarter ellipse) and its radius is reduced to
1.75 mm. A small volume is located around the baplate. Figure 4.18 shows
the axi-symmetric cross section of this microphone in proportion. e used
boundary conditions are given. e membrane has the same properties as
in the first microphone, see table 4.7. e thiness of the air layer varies
with the radial coordinate, and for r > 1.75 mm the geometry is not a layer
anymore. erefore, it is not straightforward to make an accurate model
of microphone 2. For the  and  model, this is not a problem. e
solutions of these two models are compared to ea other.
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Figure 4.18: Microphone 2 has a curved baplate and a small volume near
the edge of the membrane. e radius of the membrane is 2 mm. e air
gap has a thiness of 18 μm at the axis.

e results of the  calculations are shown in figure 4.20. e pro-
files of the temperature and radial velocity are clearly visible. ese fields
are a bit more complicated than the -like fields in the first microphone
model. e sensitivity curves are calculated with equation (4.8) and ploed
in figure 4.19. is figure shows that the  and  again yield almost
identical results. e peaks in the figure are membrane resonances that are
coupled to the acoustics. e first resonance is only lightly damped by the
viscothermal effects.
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Figure 4.19: e  (. ) and  (. ) models yield very similar sensi-
tivity curves for microphone 2.

Real microphones may have perforated baplates or other non-axi-
symmetric features. Su microphones can be modeled by 3-  and
 models. e computational costs of the  model are mu smaller
than those of the  model, especially in 3- models; as shown in sec-
tion 4.2.3.
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Figure 4.20: Solution of the pressure, temperature, velocity components
and the membrane velocity at a frequency of 44 kHz.
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e  models of the two microphones that are presented in this sec-
tion are very accurate, despite the inconsistency in the normal velocity.
Low errors for squeeze film types of problems have been anticipated in
section 3.4.2. e next section discusses the errors caused by the normal
velocity inconsistency in more detail for a piston-type problem.

4.4 On fluid structure interaction with the SLNS
model

e  model contains an inconsistency if the normal velocity does not
vanish on no-slip boundaries, as discussed in section 3.4.2. is case is typ-
ical in  problems. e errors that are caused by this inconsistency are
demonstrated and discussed here. e proposed countermeasures are eval-
uated as well.

e previous section presented a microphone model with fluid structure
interaction. e results did not show significant errors in the  model.
is is in line with expectations, because the microphone is a ‘squeeze film’
type of problem. e inconsistency in the normal velocity can lead to larger
errors in the other extreme case: the ‘piston-like’ problems, see figure 3.11
for a sematic drawing of these two types of problems.

Piston like problem

Figure 4.21 shows the fluid structure interaction problems that are used to
demonstrate the errors in the  model that are related to the inconsis-
tency in the normal velocity. e problems use a comparable model as for
the microphone in section 4.3: an axi-symmetric  problem with a mem-
brane as the structure. However, the fluid domain has different dimensions
with Rm = 2 mm and L = 3 mm. e problems resemble small drums, one
with a closed cavity behind the membrane and one in whi the boundary
opposite to the membrane is open. e drums are excited by the uniform
pressure Pm = 1 above themembrane. e details of themodel are presented
in section 4.3 of the microphone model.

e error in the  model that is caused by the inconsistency depends
on the used mesh. erefore, a mesh sequence is defined with a boundary
layer mesh; see figure 4.22 for the coarsest and the finest mesh in this se-
quence. is figure shows only a small part of the geometry. In ea mesh
refinement, the existing boundary layer elements are made twice as thin,
and four layers of elements are added to keep the total boundary layer mesh
thiness approximately the same. e figure also shows the perpendicular
coordinate x⊥ and a reference length of 0.1 mm.
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Figure 4.21: Axi-symmetric fluid structure interaction problems used to
discuss the normal velocity inconsistency in the  model.
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Figure 4.22: e coarsest and finest boundary layer mesh used for the 
model. Only a small area near the membrane center is shown.

Results

e pressure at the membrane is an important variable, because it is the load
on the structure in  problems. Figure 4.23 shows the pressure magnitude
at the the center of the membrane versus the frequency. e errors are not
clearly seen in sub-figures (a) and (b), therefore, the relative errors with
respect to the reference model are ploed in sub-figures (c) and (d). is
reference model is an  model on the finest mesh. e errors in the
standard  models are larger than the errors in the  model and the
 model that uses the rule of thumb, especially near pressure nodes. e
error is larger for fine meshes as anticipated in section 3.4.2. Furthermore,
the proposed rule of thumb (to use a slip boundary condition if the model
is ‘piston-like’) reduced the error considerably, but not completely.

e remainder of the discussion focuses on two solutions: the closed
drum at 18.2 kHz and the open drum at 36.3 kHz, whi are the frequencies
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(a) Closed drum, frequency response.
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(b) Open drum, frequency response.
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(d) Open drum, relative error.

Figure 4.23: Pressure magnitude at the center of the membrane versus
the frequency in (a) and (b); normalized difference with the  reference
solution p̂ in (c) and (d); (. )  model; (. )  model; (4×. ) 
model for four meshes with finest mesh ( .) and coarsest mesh ( .); (. ) 
model with a slip  at the membrane.

with the largest relative errors. e pressure fields of these solutions are
shown in figure 4.24. e frequencies are near the quarter and half wave-
length acoustic resonances. Wave propagation is essentially in the axial
direction at these resonances, therefore the problem is ‘piston-like’. Nev-
ertheless, the pressure contours are curved near the membrane. erefore,
neglecting the viscosity at ∂Ωm , following the rule of thumb, does lead to a
small error, whi is confirmed by figure 4.23.

e pressure magnitude at the axis near the membrane is ploed ver-
sus the perpendicular coordinate x⊥ in figure 4.25 for the different models.
e  and  models yield similar results. Furthermore, the model with
the no-slip rule of thumb also yields good results at the membrane, but the
error does not disappear further away from the boundary: neglecting the
viscosity at the boundary has slightly reduced the total amount of dissipa-
tion in the model, because the problem is not completely ‘piston-like’. e
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(b) Open drum, 36.3 kHz.

Figure 4.24: Pressure field of the  solution on the finest mesh.

four  solutions are not mu different from ea other near the mem-
brane. Only directly at the membrane do the pressures differ. For clarity,
short horizontal lines and plot marks are drawn in the figures. e finer
meshes yield higher errors for the pressure field. e solutions converge to
the reference solutions for higher x⊥. In other words, the errors are local
to the boundary layers. e structural problem is hardly affected, because
the pressure Pm at the other side of the membrane is mu larger than the
pressure p of the .

e normal velocity inconsistency is introduced in section 3.4.2 by as-
suming that the normal velocity field converges to the correct solution. is
assumption is verified in figure 4.26, whi plots the normal velocity at the
axis near themembrane for several models. e  solution does converge
to the  reference solution if the mesh is refined, but not in a smooth
manner. Nevertheless, this explains the errors in the pressure field. e fig-
ure also shows that the  model with the slip  yields a normal velocity
that is similar to the velocity in the  model.

Coarser pressure mesh

e above results may lead to curiosity about the performance of the 
model with a mu coarser pressure mesh, like in the models presented in
section 4.2.3. is is eed with three other meshes like those in fig-
ure 4.22, but with just a single layer of quadrilateral boundary layer el-
ements. e thinesses of the elements in this layer are 0.05, 0.08 and
0.1 mm for the three meshes. e viscothermal fields of the analytic 
expression (3.29) are used in these calculations. e resulting pressure mag-
nitude near themembrane axis is ploed in figure 4.27. e errors are clearly
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(a) Closed drum, 18.2 kHz.
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(b) Open drum, 36.3 kHz.

Figure 4.25: e pressure magnitude versus the coordinate x⊥. e 
(. ) and  (. ) models yield almost identical results. e error at the
membrane is small if the the slip rule of thumb is used (. ), but the error
does not disappear at locations away from the membrane. e  models
(4×. ) have no error away from the membrane, but have a large error at
the membrane. is error increases for finer meshes: ( .) coarsest mesh; ( .)
finest mesh; ( ., .) in between.
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(a) Closed drum, 18.2 kHz.
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(b) Open drum, 36.3 kHz.

Figure 4.26: e normal velocity magnitude versus the coordinate x⊥.
(. )  reference model; (. )  model; (. )  model with slip 
(hidden below the  curve); (. )  model on coarse mesh; (. ) 
model on fine mesh. e  model shows an error near the boundary
whi is smaller on the finer mesh.
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(a) Closed drum, 18.2 kHz.
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Figure 4.27: e pressure magnitude versus the coordinate x⊥ for the 
model with a coarse pressure mesh and high order numerical integration:
(. )  reference; (. ) coarse  with 0.1 mm element thiness;
(. ) coarse  with 0.08 mm element thiness; (. ) coarse  with
0.05 mm element thiness. Only the first element shows an error in the
pressure magnitude. e errors are mu smaller than those in the fine
 model in figure 4.25.

smaller than in figure 4.25. Furthermore, the error is only visible in the first
element and disappears for larger x⊥. e order of integration in the pres-
sure calculations is 30, whi is higher than necessary to obtain the ploed
curves. us, the error in the pressure field that is caused by the normal
velocity inconsistency can indeed be reduced by using a coarse mesh for
the pressure calculation.

4.5 Summary

is apter has demonstrated the four presented viscothermal acoustic
models on a collection of sample problems. e most important advantages
and disadvantages from the list in section 3.5.1 have been encountered.

e  and  models are erroneous for applications that do not meet
their geometric constraints. Nevertheless, these models are very efficient
and therefore highly recommended for applications in whi these con-
straints are satisfied. On the other hand, the  model can be used for
any geometry, but it is computationally costly, especially in 3-.

e  model is a more efficient alternative to the  model. e
 model is sufficiently accurate in all presented cases in this apter, even
in the fluid structure interaction problems for whi the errors are expected
to be larger because of the normal velocity inconsistency. In the squeeze
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film problems, the errors were found to be are negligible and in the piston-
like problems the errors were noticeable but small. Two ideas to reduce this
error are demonstrated to be effective. First, a slip boundary condition can
be applied to the  boundary in piston-like problems. Second, a coarse
mesh in the pressure smooths the error and can be applied in any problem.
is second method has the added advantage of increasing the efficiency of
the model.



Chapter 5

Miniature loudspeaker

e PhD project, of whi this thesis is the report, is a cooperation between
S and the University of Twente. S’s goal for this project is to
model hearing aid loudspeakers. Su a model is presented in this apter
as an example of how the viscothermal acoustic finite elements can be used
in a design environment.

5.1 Structure of the model

e hearing aid receiver is a transducer that comprises four physical do-
mains: electric, magnetic, meanic and acoustic. Figure 1.1 of the receiver
cross section is shown again in figure 5.1 for convenience. e important
parts are labeled and will be referred to in this apter.

It is not sensible to put everything in a single coupled  model. It is
a beer idea to model as many parts as possible with lumped models and
use a  model for only the parts that are studied in detail or the parts that
yet do not have accurate lumped models. e model of the receiver in this
apter uses an   model for the membrane, the foil and the air in the
front volume, the ba volume and the spout. is  part of the receiver
model divides the total receiver model in three parts as shown in figure 5.2:

.

..Coil

.Ba volume

.Armature

.Foil

.Membrane

.Magnet shell

.Magnet

.Spout

.Drive pin

.Front volume

Figure 5.1: Cross section of a hearing aid receiver (reproduction of fig-
ure 1.1). Its total length is 8 mm. e important parts are labeled.

109
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Vi n=⇒
Ii n

Motor

[lumped]

Fd p⇐⇒
vd p

Membrane and

acoustics []
ps⇐⇒
ϑs

Coupler

[lumped]
pc⇐=
ϑ2

Figure 5.2: e model of the receiver contains three coupled sub-models.
e  part models the membrane, the foil, the ba volume, the rear
volume and the spout. e interface variables are given above and below
the arrows.

Domain Effort variable Flow variable

Name Symbol Unit Name Symbol Unit

Electric Voltage V V Current I A
Magnetic Mmf∗ F A Flux rate ϕ̇ Wb/s=V
Meanic Force F N Velocity u̇ m/s
Acoustic Pressure p Pa Volume flow ϑ m3/s

∗ magneto-motive force

Table 5.1: e effort and flow variables of the receiver’s four physical do-
mains. e product of effort and flow results in power [W] for eadomain.

the lumped motor model, the  part just described and lumped model
of the coupler. is coupler is a measurement tool that is connected to the
spout as an acoustic termination of the receiver. It contains a microphone
that measures the pressure the receiver can generate in the ear of a user. In
other words, the coupler is an ‘ear simulator’.

Figure 5.2 shows the input variables Vi n and Ii n that denote the electric
input voltage and current, the output variables pc and ϑ2 that denote the
pressure and (leak) volume flow at the coupler. Furthermore, the interface
variables that are used to couple the sub-models to ea other are Fd p , vd p ,
ps , ϑs whi denote the force and velocity at the connection between drive
pin andmembrane, and the pressure and volume flow at the end of the spout
respectively. e given pairs of variables all contain one ‘effort variable’ and
one ‘flow variable’. Table 5.1 lists the pairs of variables for the four physical
domains. All pairs have the property that the product of the effort and the
flow variables has the unit of power [W]. is is a convenient property for
comparing the different physical domains.

e sub-models of the receiver can be assembled in two ways. e first
method is to include the lumped models in the  model. is approa is
recommended for studying the effect of the parameters in the  model.
e second method is to lump the  model and then couple it to the other
lumped models. e advantage of this second method is that the parameters
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Figure 5.3: Sematic representation of a transmission matrix two-port
model. e symbols e and f denote effort and flow variables respectively.
e transmission matrix A can be frequency dependent.

in the lumped part of the model can be studied without recalculation of the
 part of the model. Both methods are used in this apter.

e lumped model can be put in several forms. Here, the transmission
matrix form is used, whi has the advantage that sub-models can be eas-
ily assembled to form larger models. For example, the complete receiver
model contains three sub-models, ea with its own transmission matrix:
the transmission matrix model of the complete receiver is{

Vi n

Ii n

}
= Ar ecei ver

{
pc

ϑ2

}
, Ar ecei ver = Amotor AF E M Acoupl er , (5.1)

in whi Amotor , AF E M and Acoupler are the transmission matrix sub-
models of the motor, the  part (lumped of course) and the coupler.

Transmission matrix models have the structure that is shown in fig-
ure 5.3. e 2-by-2 transmission matrix A is frequency dependent: ea
matrix entry can be thought of as a transfer function. e collection of
tables of Smid [63] is useful to derive ‘two-port models’, of whi the
transmission matrix models are a sub-class. e next sections present the
three sub-models Amotor , AF E M and Acoupler .

5.2 Motor model

e lumped model of the motor is presented first. is motor operates ac-
cording to the balanced armature principle in whi an armature is placed
in a gap between two equally poled permanent magnets (opposite poles fac-
ing the armature). e armature is aracted by ea of these magnets, but
its stiffness keeps it centered in the gap. Figure 5.4(a) shows the armature
and figure 5.4(b) shows it with the other motor components. An electric
current through the coil induces a magneto-motive force in the armature.
As a result, the armature is aracted stronger by one permanent magnet and
weaker by the other, resulting in a ne force. is force bends the armature
and pushes a membrane that is connected to it by the drive pin. However,
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(a) Armature.
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Figure 5.4: e balanced armature motor of the receiver consists of an
armature with several electric and magnetic parts.

Vi n=⇒
Ii n

Electro-

magnetic
Fc⇐⇒
ϕ̇c

Magneto-

meanic
Fz⇐⇒
vz

Meanic Fd p⇐=
vd p

Figure 5.5: e sub-models of themotormodel with the interface variables.
e electro-magnetic part contains the coil, the magneto-meanic part
contains the permanent magnets, magnet shells and the magnetic proper-
ties of the armature, and the meanic part contains the meanic proper-
ties of the armature and the drive pin.

the lumped model of the motor stops at the drive pin tip and the membrane
is a part of the  model presented later.

e lumped sub-model of the balanced armature motor contains several
sub-models itself; see figure 5.5. e interface variables Fc , ϕ̇c , Fz and vz

are the magneto-motive force and the flux rate that are generated by the coil
and the effective force and velocity at the armature that are generated by
the magnetic circuit respectively. e complete motor model is assembled
aer the sub-models are presented.

5.2.1 Electro-magnetic coupling

e electric circuit of the receiver consists of a single component: the coil.
An ideal voltage source is assumed to supply the power to the coil. In a
lumped electric circuit, the coil’s resistance can be modeled as a ideal series
resistor and the electro-magnetic properties as an ideal coil, as shown in
figure 5.6. e resistor’s two-port equation is a combination of Ohm’s law
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Figure 5.6: Sematic of the lumped electrical domain of the 3100 hearing
aid receiver. e coil is not modeled as an inductance, but couples the
electrical domain to the magnetic domain.

and Kirhoff’s laws: {
Vi n

Ii n

}
=

[
1 RDC

0 1

]{
Vc

Ic

}
, (5.2)

with Vc and Ic the electric voltage over and current though the coil and RDC

the value of the resistor.
Coils are oen modeled as inductances in an electric circuit, implicitly

converting all magnetic effects to the electric domain. Here, the magnetic
domain and the electromagnetic coupling are explicitly modeled. e in-
duced magneto-motive force is proportional to the current through the coil,
multiplied by the number of turns of the coil. Vice versa, the magnetic flux
rate induces a voltage in the coil. e transmission matrix of this electro-
magnetic coupling is {

Vc

Ic

}
=

[
0 nc

n−1
c 0

]{
Fc

ϕ̇c

}
, (5.3)

with nc the number of turns of the coil and Fc and ϕ̇c the induced magneto-
motive force and flux rate in the armature.

e total electro-magnetic system can now be described by the multi-
plication of the transmission matrices of the sub-systems:{

Vi n

Ii n

}
= Ae,m

{
Fc

ϕ̇c

}
, Ae,m =

[
1 RDC

0 1

][
0 nc

n−1
c 0

]
. (5.4)

5.2.2 Magneto-mechanic coupling

emagnetic circuit is a bit more complicated than the electric circuit. Fur-
thermore, the physics of the magnetic domain are less well known than
those of the electric and meanic domains. erefore, the equations of the
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(a) Magnetic circuit of motor.
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(b) Electric equivalent sematic.

Figure 5.7: e magnetic circuit of a balanced armature motor and its
electric equivalent sematic. e armature deflection uz and the magnetic
flux from the coil ϕc are shown in both sub-figures. e Fc source is not
ideal, but satisfies the equation derived above.

magnetic circuit are derived first and are wrien in transmission matrix
form later.

e magnetic circuit is shown in figure 5.7(a). e 3- shape of the mag-
net shells is simplified to a 2- ⊂-shape in the circuit. e two permanent
magnets are drawn in gray and white to indicate the polarity. e arma-
ture is magnetized by the electric coil as modeled above. is results in a
magneto-motive force Fc and a meanical force Fm at the end of the arma-
ture. As a result the armature bends toward one of the permanent magnets,
with the deflection at the magnet center denoted as uz . For clarity, the air
gap thiness and the armature deflection are exaggerated in the figure.

e only type of magnetic component used in the circuit is a reluctance,
denoted by R (not to be confused with the real value operator ℜ in the
previous apters). It satisfies a law that resembles Ohm’s law of an electric
resistance:

F=Rϕ. (5.5)

erefore, it is possible to represent the magnetic circuit by an equivalent
electric circuit, see figure 5.7(b). In this analogy, the magneto-motive forces
are represented by voltages, the magnetic fluxes by electric currents and the
magnetic reluctances by electric resistances. However, realize that magnetic
reluctances store magnetic energy rather than dissipate it, unlike electric
resistances.¹

¹e analogy would be energy consistent if current would be set equivalent to flux rate
ϕ̇ (instead of the flux ϕ), and the magnetic reluctance equivalent to a capacitance (with
C ∝R−1).
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In figure 5.7(b), the permanentmagnets aremodeled as an ideal F-source
with a series reluctance. e space between the permanent magnets is di-
vided into two air gaps, ea with reluctance R0 if the armature is in the
middle position. When the armature deflects, one air gap narrows and
the other widens, and the corresponding reluctances ange proportionally.
is is indicated by a potentiometer in the electric sematic (drawn with
the armature in the middle position). e reluctances of the magnet shells
and the armature are neglected with respect to the other reluctances. e
magneto-motive force from the coil Fc is not modeled as an ideal source,
but satisfies the electro-magnetic equation (5.4).

e equations of the magnetic circuit can be derived from the electri-
cal circuit in figure 5.7(b). e equations are easier to express with the re-
luctances at one side of the centered armature (R0) and of the armature
displacement (Rz )

R0 =Rm +Rg , Rz =Rg uz /h0, (5.6)

with h0 the thiness of ea air gap if the armature is in themiddle position.
Kiroff’s laws and equation (5.5) can be combined to express the fluxϕc

as a function of the armature displacement (inRz ) and the magneto-motive
force from the coil Fc :

ϕc = 2R0Fc +2RzFm

R2
0−R2

z
. (5.7)

An expression for the armature magneto-motive force follows from rewrit-
ing the above equation:

Fc =
R2

0−R2
z

R0

ϕc

2
−Rz

R0
Fm . (5.8)

is nonlinear equation can be linearized under the typical operating con-
ditions of the receiver

Rz ≪R0, Fc ≪Fm , uz ≪ h0. (5.9)

e linearized relation of the armature magneto-motive force now reads

Fc = R0

2
ϕc −ηmuz . (5.10)

with the magnetic coupling constant

ηm = RgFm

R0h0
. (5.11)
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Figure 5.8: Sematic of the lumped meanical system. e armature is
approximated as a hinged rigid bar. e armature’s mass and stiffness are
lumped to the tip. e mass and stiffness of the drive pin are included in
the meanical model.

is constant can also be used to express the meanical force Fz as a func-
tion of the magnetic flux:

Fz = ηmϕc , (5.12)

whi is the linear relation valid around uz = 0.
Equations (5.10) and (5.12) can be combined in the matrix equation{

Fc

ϕc

}
=

[
R0
2ηm

−ηm

η−1m 0

]{
Fz

uz

}
. (5.13)

Notice that the magnetic system has a negative stiffness: for Fc = 0, the
displacement uz and the force Fz have the same sign. is negative stiff-
ness is compensated for by the positive meanical bending stiffness of the
armature, whi is added later.

e above matrix equation can be rewrien in the preferred effort and
flow variables of table 5.1, whi yields the magneto meanic transfer ma-
trix {

Fc

ϕ̇c

}
= Am,M

{
Fz

u̇z

}
, Am,M =

[
R0
2ηm

−ηm

iω
iω
ηm

0

]
. (5.14)

5.2.3 Mechanical model

e sematic of the lumped meanical model is shown in figure 5.8. e
armature is approximated as a hinged rigid bar with its equivalent stiffness
ka and mass ma lumped to the tip; see figure 5.8. e drive force from the
magnetic circuit acts not at the tip of the armature, but at a location that
corresponds to the center of the permanent magnets. e drive pin at the
tip of the armature is modeled as a lumped mass and stiffness.

Without considering the drive pin stiffness and mass, the transmission
matrix of the drive force and velocity at the armature’s location near the
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magnet center to the effective force and velocity at the armature tip is{
Fz

u̇z

}
=

[
Tm 0
0 T −1

m

][
1 ka

iω + iωma

0 1

]{
Ft

u̇t

}
, (5.15)

where Tm > 1 is the transmission ratio that relates the force and velocity
to their equivalent values at the tip. e stiffness and mass of the armature
reduce the force Ft that is available to drive the membrane through the drive
pin.

e drive pin can be added to the model with the transmission matrix{
Ft

u̇t

}
=

[
1 0

iω
kd p

1

][
1 iωmd p

0 1

]{
Fd p

u̇d p

}
. (5.16)

e transmission matrix that takes the drive pin stiffness into account is
different than the matrix for the armature stiffness, because the drive pin
stiffness kd p is in series while the armature stiffness ka is parallel.

e transmission matrix model of the meanical part of the motor can
be assembled as{

Fa

u̇a

}
= AM

{
Fd p

u̇d p

}
,

AM =
[

Tm 0
0 T −1

m

][
1 ka

iω + iωma

0 1

][
1 0

iω
kd p

1

][
1 iωmd p

0 1

]
. (5.17)

5.2.4 Complete motor model

e complete balanced armature motor model is simply the ain of the
sub-models of equations (5.4), (5.14) and (5.17):{

Vi n

ii n

}
= Amotor

{
Fd p

u̇d p

}
, Amotor = Ae,m Am,M AM . (5.18)

Table 5.2 lists the parameters of the lumped motor model. e values of
these parameters are not listed for confidentiality. is motor model has
the drive pin force and velocity as outputs. It is coupled to the  model of
the membrane and the acoustic volumes whi has these variables as inputs.

5.3 Finite element model

e  part of the receiver model describes the membrane and the air in
the ba volume, front volume and spout. ese ‘parts’ are labeled in fig-
ure 5.1, but this figure does not show the geometry of the membrane clearly.
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Parameter Symbol Unit

DC resistance of coil RDC Ω

Number of coil windings nc 1

Total reluctance at one side of the armature R0 H−1
Magneto-meanical coupling coefficient ηm N/Wb

Transformation ratio Tm 1
Equivalent stiffness at tip ka N/m
Drive pin stiffness kd p N/m
Equivalent mass at tip ma kg
Half of drive pin mass md p kg

Table 5.2: Parameters for the lumped balanced armature motor model. e
values are confidential and are therefore not listed.
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.Motor .Drive pin tip

(a) Case and motor.

.

. .Slit

.Membrane
.Foil

(b) Membrane and foil.

.

.
.Spout
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(c) Complete receiver.

Figure 5.9: e ba volume and front volume are located on both sides
of the membrane. e ba volume is the air in the case that surrounds
the motor (a). It is sealed off by the membrane and the foil (b). e front
volume is the small layer of air above the membrane (b) and is sealed off by
the cover of the case (c). e spout (c) and the front volume are connected
by the slit (b).

Figure 5.9 shows the parts from another view point. e ba volume of the
receiver is the air that surrounds the motor. It is enclosed by the case of
the receiver and the membrane. e front volume of the receiver is located
on the other side of the membrane. It is enclosed by the membrane, the
case and the cover of the case. e profile in the membrane that is shown
in figure 5.9(b) increases its stiffness. By contrast, the foil that surrounds
the membrane has a profile to allow the membrane to move up and down
easily. Furthermore, the foil provides an airtight seal between the front vol-
ume and the ba volume. e front volume is a layer with a non-uniform
thiness because of the shape of the membrane and the foil. A small slit,
shown in figure 5.9(b), connects the front volume to the spout.
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Because of symmetry, the geometry for the  model is half the ge-
ometry of the front volume, the slit and the spout. e  geometry is
shown in figure 5.10, but upside-down in comparison with figure 5.9 so that
the membrane side is visible. e thiness of the front volume is 0.3 mm,
whi corresponds to a shear wave number range of

∣∣kvℓ
∣∣= [2.1,21] for the

frequency range f = [102,104] Hz. e air is modeled with the  model
and the used mesh is shown in figure 5.10(a). e membrane and the foil
are modeled by C’s shell elements on the boundary of the fluid do-
main; see figures 5.10(c) and 5.10(d) for the geometries of these structures.
e membrane shape is su that a flexible hinge is formed at one side. e
drive pin force Fd p and velocity vd p are applied and evaluated at the other
side of the membrane at the semicircle pat in the figure. e variables at
the output of the  model are the pressure ps and volume flow ϑs at the
end of the spout, shown in figure 5.10(b).

e finite element model contains fluid structure interaction between
the shell elements and the  elements in the front volume as described in
section 3.4.3. Besides the  with the front volume, there is an interaction
with the ba volume. is volume is not modeled with finite elements, but
is included by means of a lumped model that calculates the pressure from
the mean normal structure (membrane and foil) displacement. is pressure
is applied as a uniform normal load at the structure. e lumped model of
a volume is derived later and results in equation (5.22).

5.3.1 Lumping the FEM model to a transmission matrix

e  model of the membrane, the volumes and the spout has to be cou-
pled to the lumped models of the motor and the coupler that is described
later. As mentioned, there are two methods: the lumped models can be in-
cluded in the model, or the model can lumped. e implementation
of the first method depends on the used  soware. e second method is
explained here. e entire  calculation is lumped to the two-port trans-
mission matrix{

Fd p

vd p

}
= AF E M

{
ps

ϑs

}
, AF E M =

[
a11 a12
a21 a22

]
. (5.19)

e four frequency dependent entries in the matrix can be estimated from
two  calculations:

• Calculation 1: Unity input force (Fd p = 1) and zero volume velocity
at the spout (ϑs = 0).

• Calculation 2: Unity input force (Fd p = 1) and zero pressure at the
spout (ps = 0).
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(a) Geometry and mesh
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Figure 5.10: Finite element model of the front volume and the spout (half
the geometry and upside-down). Figures (c) and (d) show the membrane
and the foil gully with a darker color. e interface variables for the lumped
parts of the model are the pressure and the volume flow (ps , ϑs ) at the end
of the spout, and the force and velocity at the drive pin tip (Fd p , vd p ),
located at the marked semicircle pat.

e interface variables that are used in the coupling are mean values at the
interface. e pressure at the spout is assumed to be uniform and likewise,
the distributed force at the drive pin area is assumed to be uniform. Calcu-
lation 1 yields the matrix entries a11 = 1/ps and a21 = vd p /ps , and likewise,
calculation 2 yields the matrix entries a12 = 1/ϑs and a22 = vd p /ϑs .

e transmission matrix AF E M that results from the  calculations
is shown in figure 5.11. Another calculation without viscothermal effects
( model with Ψv =Ψh = 0) is shown for comparison. e figure shows
that the viscothermal effects do not ange the curves mu, although the
front volume is narrow (0.3 mm). An explanation is that the length of the
front volume is mu smaller than the wavelength. Nevertheless, the vis-
cothermal effects are already noticeable and increase if the front volume is
narrowed further. e modeled receiver is one of S’s larger types.
us, more viscothermal damping can be expected in models of smaller
(newer) receivers.

5.4 Coupler model

e performance of a receiver can be measured with a coupler. is tool
resembles a Helmholtz resonator with a 2 cc volume in whi the pressure is
measured by a microphone; see figure 5.12. e compliance of a 2 cc volume
corresponds to the compliance of a typical ear canal with eardrum. e
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Figure 5.11: e components of the transmission matrix AF E M (. ). e
results of an isentropic acoustic calculation (. ) are added for comparison.
Viscothermal damping does not influence the curves mu in this calcula-
tion.
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.

.Tube .Volume
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.ϑs

Figure 5.12: Sematic drawing of a coupler. It is a measurement tool in
the form of a Helmholtz resonator. e measured pressure pc is su that
it corresponds to the pressure in the ear canal of a user. e specification
of the tube depends on the type of hearing aid.

specification of the tube of the coupler depends on the use of the receiver: a
behind-the-ear hearing aid has a longer tube than an in-the-ear hearing aid
for example. A tube with an inner radius of 0.5 mm and a length of 10 mm
is used here.
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..ϑs .ϑc

.ps .pc

Figure 5.13: Sematic of a tube 2-port. In general, the velocity depends
on the location in the tube, thus here ϑs ̸=ϑc , unlike in some other lumped
(short) tube models.

..pc
.ϑc .ϑ2

Figure 5.14: Sematic of an acoustic volume 2-port. Another component
can be coupled to the volume with ϑ2, but for the coupler ϑ2 = 0.

5.4.1 Tube

A two-port of a uniform tube is defined by using the variables shown in
figure 5.13. For tubes that are very short compared to the wavelength, the
velocity can be approximated as uniform over the length (ϑs = ϑc ). How-
ever, for longer tubes, or higher frequencies, a different approa is needed.
en, the transmission matrix can be obtained from the analytic solutions
of the acoustic model ( model), resulting in{

ps

ϑs

}
= Atube

{
pc

ϑc

}
, Atube =

[
cos(kℓL) − Zℓ

i S sin(kℓL)
i S
Zℓ

sin(kℓL) cos(kℓL)

]
, (5.20)

with L in [m] the length of the tube and S in [m2] the surface area of the tube
cross section. e above transmission matrix is comparable to the results
of Van der Eerden [25]. e difference is that he used admiance matri-
ces instead of transmission matrices. Rules for conversion between these
descriptions are listed in [63]. e  wave number kℓ and aracteristic
impedance Zℓ depend on the tube cross section radius, the frequency and
the air parameters; see section 3.3.

5.4.2 Volume

e pressure is assumed to be uniform in a lumped acoustic volume; see
figure 5.14. e governing equation follows from integrating the continuity
equation (3.28) over the volume and the applying Gauss’ theorem (1.19) to
the divergence of the velocity:

ϑout =− i k0
Z0

p
∫
Ω

Ψ′
h dΩ, (5.21)
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where ϑout =ϑ2−ϑc is the ne outward volume velocity in [m3/s]. If ther-
mal effects are neglected, Ψ′

h = 1 and the integral equals the volume V0 in
[m3]. e two-port transmission matrix equation of the isentropic acoustic
volume is{

pc

ϑc

}
= Avol ume

{
p2
ϑ2

}
, Avol ume =

[
1 0

i k0V0
Z0

1

]
. (5.22)

Here, ϑ2 (and p2) can be used to connect another component. Figure 5.12
shows a microphone at this location whi has a non-zero compliance in
general. However, the 2 cc value of the volume already accounts for the
microphone compliance. erefore, the volume flow ϑ2 = 0 in the coupler
model.

5.4.3 Complete coupler

e complete coupler is the series connection of the tube and the volume:{
ps

ϑs

}
= Acoupl er

{
pc

0

}
, Acoupl er = Atube Avolume . (5.23)

e termination with zero volume flow in the above equation is in fact the
prescription of the boundary condition ϑ2 = 0. Furthermore, p2 = pc in the
lumped volume by definition. e required parameter values are listed in
table 5.3.

Parameter Symbol Value Unit

Tube radius ℓ 0.5·10−3 m
Tube length L 10·10−3 m
Coupler volume V0 2·10−6 m3

Table 5.3: Parameter values for the coupler model.

5.5 Results of the complete receiver model

e complete receiver model is described by equation (5.1) in whi all sub-
models have been presented. e model needs two boundary conditions.
e boundary condition at the coupler is ϑ2 = 0 as discussed above and
the other boundary condition is the electric input whi is prescribed as
Vi n = 0.11 V.

e pressure in the coupler pc that is calculated by the model is com-
pared to the measured value in figure 5.15. e model and measurement
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Figure 5.15: Pressure in the coupler for an input voltage Vi n = 0.11 V: (. )
result of the model; (. ) measured response.

mat well. e model parameters supplied by S are for the receiver
type, not for the specific specimen that is used in the measurement. ere-
fore, the results may be improved by validating all model parameters, but
this course of action is not pursued here. Since a model of the receiver is
now available, it is interesting to visualize the effect of anging several
model parameters on the response of the receiver.

Figure 5.16 shows the effect of several motor parameters on the response
of the model. ese responses are calculated with the original two-port ma-
trix of the  part of the model. erefore, no additional  calculations
are needed to yield these curves. e calculation time is less than a second
for ea parameter ange. e figure shows that the electric and magnetic
parameters (RDC , nc and h0) mainly influence the response at frequencies
below the first resonance peak at 1.8 kHz. e drive pin stiffness kd p is too
high to have a large influence in the shown frequency range. It only in-
fluences the third resonance at 6.6 kHz. e armature stiffness influences
the response at all frequencies near and below the second resonance peak
at 4.4 kHz, while the armature mass ma influences the response at all fre-
quencies near and above this resonance.

Figure 5.17 shows how the curves ange with several parameters of the
 model. ese parameter studies are mumore time consuming to per-
form than the previous studies, because the coupled  calculation has to
be redone. Instead of creating a new transmissionmatrixwhi requires two
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(a) Coil resistance RDC .
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(d) Drive pin stiffness kd p .
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(f) Armature mass ma .

Figure 5.16: Effects of perturbing several motor model parameters: (. )
unperturbed model; (. ) doubled value; (. ) halved value.
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(a) Ba volume.
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(b) Foil thiness.
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(c) Membrane Young’s modulus.
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(d) Membrane density.

Figure 5.17: Effects of perturbing several  model parameters: (. )
unperturbed model; (. ) doubled value; (. ) halved value.

calculations per curve, the lumped motor and coupler models are included
into the  model. erefore, a single  calculation per curve suffices,
but this calculation is only valid for the used set of model parameters. e
figure shows that the ba volume has a similar, but smaller, influence on
the low frequency response as the armature stiffness. However, the ba
volume hardly influences the second resonance peak at 4.4 kHz, unlike the
armature stiffness. e ange of the curves with the foil thiness is un-
symmetric: doubling the thiness shows a low frequency decrease of the
response, but halving the thiness does not have mu influence on the
curve at all. Apparently, the contribution of the foil to the total stiffness of
the model is insignificant at its nominal thiness. e Young’s modulus
of the membrane especially influences the third resonance peak at 6.6 kHz.
e membrane density has an even larger influence on this peak, but also
influences the two other peaks.

e influence of anging the model parameters of the coupler on the
response is shown in figure 5.18. e tube length Lt has an influence that
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(a) Tube length Lt .
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(b) Coupler volume V0.

Figure 5.18: Effects of perturbing several coupler model parameters: (. )
unperturbed model; (. ) doubled value; (. ) halved value.

(a) f = 1.8 kHz. (b) f = 4.4 kHz. (c) f = 6.6 kHz.

Figure 5.19: Magnitude of the deflection of the membrane and foil at the
three resonance peaks.

is comparable to the other mass-influencing parameters. However, the tube
length has a relatively large influence on the first resonance peak at 1.8 kHz.
e curves for different coupler volumes V0 shows that the receiver is effec-
tively an acoustic volume source. e termination volume determines the
pressure that this volume source can generate.

An explanation of the resonance peaks follows from the above param-
eter studies. e first two peaks (1.8 and 4.4 kHz) are coupled meanic
acoustic resonances that are influenced by the tube length, the membrane
density and the armature stiffness. Furthermore, the first peak is sensitive to
the ba volume and the second peak to the armaturemass. e third peak is
a membrane resonance that is influenced by the density and Young’s mod-
ulus of the membrane. is resonance is also influenced by the drive pin
stiffness and the armature mass. Figure 5.19 shows the deflection amplitude
of the structure at the three resonance peaks. e drive pin deflection is
relatively small at the third resonance peak and large at the first two peaks.
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5.6 Summary

is apter has demonstrated how the viscothermal acoustic models can
be used in a design environment. A hearing aid receiver, including coupler,
has been modeled. e viscothermal acoustic air is modeled by the 
model ( part) and the  model (coupler part).

Only the front volume, spout, and membrane are modeled with a cou-
pled  model and the other parts with efficient lumped models. By using
this approa it is possible to do parameter studies efficiently. e costly 
calculation has to be redone only if one of the parameters in the  part
of the model is anged; not if parameters in the lumped parts are anged.
Several parameter studies are presented. ese studies show that the acous-
tic and meanic parts are tightly coupled at the first two resonances of the
receiver.

e response of the originalmodelmates themeasured response. Nev-
ertheless, it may be possible to improve the model if all parts of the model
were to be thoroughly validated with measurements.



Chapter 6

Conclusions and discussion

6.1 Conclusions

e goal of the PhD project that resulted in this thesis was to create effi-
cient viscothermal acoustic models for arbitrary geometries that may in-
clude fluid structure interaction and can be used in a design environment.
Four models are presented and compared to ea other and to measure-
ments: the full linear Navier-Stokes () model, the boundary layer im-
pedance () model, the low reduced frequency ()model and the sequen-
tial linear Navier-Stokes () model. Eamodel contains both the viscous
and the thermal effects on the acoustic wave propagation. Furthermore, the
models are formulated in the time harmonic form (frequency domain). is
section is used to compare the results to the goal of the project. Table 6.1
summarizes these conclusions. e models are more thoroughly compared
to ea other in section 3.5.

Only the  and  models can be used to model arbitrary ge-
ometries. Non-homogeneous viscous (shear velocity/force) and thermal
(temperature/heat flux) boundary conditions can be prescribed in the 
model, but not in the  model. It is possible to extend the  model,
but this increases the complexity and the computational costs of the model.
Non-homogeneous acoustic (pressure/normal velocity) boundary condi-
tions can be prescribed in both models. e  and  models are not ap-
plicable to arbitrary geometries. e  model is suited for relatively large
geometries in whi all aracteristic lengths are larger than the boundary
layer thiness. e  model is applicable to waveguides (tubes and lay-
ers) below the cutoff frequency. A uniform pressure at eawaveguide cross
section is assumed in the  model, like in comparable isentropic acoustic
models.

A large difference is observed in the efficiency of the models. e equa-
tions of the  model have been scaled su that a complex symmetric
 system matrix results. Although this reduces the computational costs,

129
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Model Arbitrary geometries Efficiency 

 yes costly full coupling

 yes intermediate
only pressure and
normal velocity


no: all lenghts mu larger than

efficient
only pressure and

the boundary layer thiness normal velocity


no: waveguides below

efficient
only pressure and

the cutoff frequency normal velocity

Table 6.1: Comparison of the models for the apects of suitability for arbi-
trary geometries, efficiency and fluid structure interaction. All four models
are presented in a form that can be used in a design environment. erfore,
this aspect is not included in the table.

the  model is still the least efficient model of this thesis. e limits
of a contemporary desktop computer are easily exceeded in 3-  mod-
els. Fortunately, 2- models require mu less computational resources su
that the  model can be a good alternative to the other models in 2-.
e  and especially the  model are the most efficient models in this
thesis. Both have computational costs in the order of isentropic acoustic
models; with reduced spatial dimensionality for the  model.¹ e 
model fills the gap between the costly  model and the efficient  and
 models.

All four models can be used in fluid structure interaction problems.
However, in the ,  and  models only the velocity in normal di-
rection and the pressure are coupled to the structure. e  model can
be used if the shear velocity and forces, and the temperature and heat flow
should be coupled to the structure as well. e model has the disadvan-
tage that essential boundary conditions are involved in the fluid structure
interaction. is requires either a reinterpolation (not covered in this the-
sis) or mating fluid and structure meshes (limiting the oice of structural
finite elements). eoretically, the  model has a potential problem in
fluid structure interaction because of the inconsistency in the normal veloc-
ity boundary condition. Fortunately, the errors caused by this inconsistency
are acceptable in many cases and can be circumvented or reduced in many
other cases. No practical limitations to fluid structure interaction with the
 model have been encountered.

¹e calculation of the pressure field has a reduced spatial dimensionality in the 
model. e viscous and thermal waves are typically calculated analytically. e computa-
tional cost increases if these waves must be calculated by .
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e applicability in a design environment cannot be measured unam-
biguously. Chapter 5 is an example of how the viscothermal acoustic mod-
els can be applied in practice. at apter presented a model of a hearing
aid receiver whi agrees well with the measurements. Several parameter
studies are carried out efficiently with the model. Another aspect of appli-
cability besides efficiency is the ease of use. All four models have been im-
plemented in the finite element soware C. is increases the ease of
use, because all preprocessing and postprocessing features of this soware
can be used. Furthermore, the viscothermal acoustic models can be eas-
ily coupled to C’s predefined structural models. Together, the four
presented models in this thesis can be used to model many viscothermal
acoustic problems effectively.

6.2 Discussion

is section discusses the possibilities for further resear on the viscother-
mal acoustic models in this thesis. e discussion is divided into two parts:
extensions of the models and improvements of the models.

6.2.1 Extending the models

As mentioned, the  model and the  model can be extended to in-
clude non-homogeneous viscothermal boundary conditions. Hannink [29]
presented an  model with su an extension. Furthermore, Nijhof [55]
presents the  model in a very general seing that includes inhomoge-
neous terms for both the boundary conditions and the s. e  model
can be extended along similar lines.

One important limitation of all models in this thesis is that the linear
acoustic assumptions should be satisfied. Without these assumptions, the
already high computational costs of the models would increase dramati-
cally. Inevitably, the linear models have a limited applicability. Given a
linear solution of any of the viscothermal acoustic models, the magnitudes
of the non-linear terms in the original Navier-Stokes equations can be cal-
culated to e the consistency of the linear assumptions for the modeled
problem. Perhaps an estimator can be created from these terms whi quan-
tifies the overall model accuracy. In many problems (certainly in hearing
aid receivers) a linear overall response is aimed for. It would be beneficial
if the user of the model is warned by su an estimator that the model is
invalid for input signals larger than a certain value.

Another direction to extend the models in this thesis is the inclusion
of mean flow and static temperature gradients. Applications are thermoa-
coustic engines and mufflers in car exhausts for example. ese topics are
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studied in for example [1, 2, 13, 24, 33, 48, 56, 57, 66], using models that re-
semble the  model. Similar extensions may be formulated for the 
and  models su that problems with mean flow and static temperature
gradients can be modeled for arbitrary geometries.

6.2.2 Improving the models

e models in this thesis use fairly standard finite element methods. e
performance of the models may be improved upon if more sophisticated
methods are developed. Several ideas are discussed here.

e  model uses a mixed formulation to prevent loing, as demon-
strated in section 2.2.2. Mixed methods are not the only means to prevent
loing. For some problems other than viscothermal acoustics, stabilizing
terms are added to the standard weak form. ese ‘stabilized methods’ po-
tentially result in a good convergence with less degrees of freedom. In vis-
cothermal acoustics, the formulation of Joly [38, 36, 37], whi does not
include the pressure field, could be a good basis for su stabilized methods.
e referenced publications do not mention the use of a stabilization term
and may still suffer from mild loing.

e other ideas in this discussion concern the  model. e 
model has an inconsistency in the normal velocity boundary condition. Al-
though this inconsistency did not limit the applicability of the  model in
practice, the model would be more elegant without the inconsistency. Fur-
ther resear might succeed in finding su an  model, possibly based
on the weak form of equation (3.70).

e calculation of the pressure field in the  model can use a mu
coarser mesh than the calculation of the viscous and thermal fields. How-
ever, the pressure field depends on the viscothermal fields. erefore, the
numerical integration method for the assembly of the system matrix of the
pressure problem must be accurate enough to account for the small bound-
ary layers of the viscothermal fields. Unfortunately, the gain that is ob-
tained from using a coarse mesh is partially wasted by increasing the order
of the numerical integration, as has been shown in section 4.2.3. emethod
would be more efficient with a smart numerical integration method that in-
creases the order of integration only for the elements in the boundary layer
and not for the elements in the bulk.

e above idea could be taken further with adaptive mesh refinement. If
the initial mesh of the  problem is the coarse pressure mesh, the viscous
and thermal fields can be calculated by using an adaptive mesh refinement
procedure that refines the mesh in the boundary layer. e subsequent pres-
sure calculation can use the shape functions that are defined on the coarse
initial mesh and the numerical integration seme that is based on the re-
fined mesh of the viscothermal fields.



6.2. D 133

Possibly an even more efficient implementation can be created by using
both  and  (boundary element method) for the  model. e
viscous and thermal fields can be modeled efficiently in  in whi only
the boundary has to be discretized. is results in a smaller number of
degrees of freedom. Furthermore, the systemmatrix is not full as in acoustic
 problems, but sparse. is sparsity results from the Green’s function
that vanishes exponentially with distance for the diffusion-like viscous and
thermal fields. e pressure field can be calculated with  on a coarse
mesh. is calculation would benefit from a smart numerical integration
method as described above. e clear drawba of this procedure is that the
used soware would need to contain both a  and a  framework.
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Appendix A

Viscothermal fields for the LRF model:
analytic solutions

Only the results for isothermal / no-slip boundary conditions are shown.
e presented equations (excluding those for the ring) are based on the re-
sults of Stinson [64, 65] and Kozlov [49].

Slit (Layer)

.

.ℓ

z = [−ℓ/2,ℓ/2], Scd = ℓ,

Ψϕ = 1− cos
(
kϕz

)
cos

(
kϕℓ/2

) , Υϕ = 1− tan
(
kϕℓ/2

)
kϕℓ/2

.

Rectangle

.

.2a

.2b
x = [−a, a], y = [−b,b],

ℓ= 2ab

a +b
, Scd = 4ab,

m′ = (m +1/2)π,

αm =
√

k2
ϕ
−

(
m′

a

)2
, βm =

√
k2
ϕ
−

(
m′

b

)2
,

Ψϕ = k2
ϕ

∞∑
m=0

−1m

m′

cos
(

m′x
a

)
α2
ϕm

(
1− cos

(
αϕm y

)
cos

(
αϕmb

))
+

cos
(

m′y
b

)
β2
ϕm

(
1− cos

(
βϕm x

)
cos

(
βϕm a

)) ,

Υϕ = k2
ϕ

∞∑
m=0

[(
αϕmm′)−2 (

1− tan
(
αϕmb

)
αϕmb

)
+ (

βϕmm′)−2 (
1− tan

(
βϕm a

)
βϕm a

)]
.
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Equilateral triangle

.

.d

.ℓ

.x

.y

ℓ= d

2
p
3

, Scd = 3
p
3ℓ2,

Ψϕ = 1−
sin

(
kϕ

3ℓ−2y
2

)
+ sin

(
kϕ

y−p3x
2

)
+ sin

(
kϕ

y+p3x
2

)
sin

( 3
2kϕℓ

) ,

Υϕ = 1−3
tan

( 3
2kϕℓ

)− 3
2kϕℓ( 3

2kϕℓ
)2

tan
( 3
2kϕℓ

) .

Circle

.

.ℓ

r = [0,ℓ], Scd =πℓ2,

Ψϕ = 1− J0
(
kϕr

)
J0

(
kϕℓ

) , Υϕ =− J2
(
kϕℓ

)
J0

(
kϕℓ

) .

Ring

.

.Ro

.Ri

.ℓ Scd = So −Si , So =πR2
o , Si =πR2

i ,

r = [Ri ,Ro], ℓ= Ro −Ri ,

αϕ =
1− H(2)

0 (kϕRo)
H(2)
0 (kϕRi )

1− H(1)
0 (kϕRi )

H(1)
0 (kϕRo)

H(2)
0 (kϕRo)

H(2)
0 (kϕRi )

, βϕ =
1− H(1)

0 (kϕRi )
H(1)
0 (kϕRo)

1− H(1)
0 (kϕRi )

H(1)
0 (kϕRo)

H(2)
0 (kϕRo)

H(2)
0 (kϕRi )

,

Ψϕ = 1−αϕ

H(1)
0

(
kϕr

)
H(1)
0

(
kϕRo

) −βϕ

H(2)
0

(
kϕr

)
H(2)
0

(
kϕRi

) ,

Υϕ = Si

Scd

[
αϕ

H(1)
2

(
kϕRi

)
H(1)
0

(
kϕRo

) +βϕ

H(2)
2

(
kϕRi

)
H(2)
0

(
kϕRi

)]
− So

Scd

[
αϕ

H(1)
2

(
kϕRo

)
H(1)
0

(
kϕRo

) +βϕ

H(2)
2

(
kϕRo

)
H(2)
0

(
kϕRi

) ]
.

e use of (M’s) scaled Hankel functions is recommended to improve
numerical robustness.¹ Furthermore, an approximation as slit is accurate if
ℓ≪ Ri .

¹In ratios of Hankel functions with different arguments (using both Ri and Ro ), the
unequal scaling of numerator and denominator can be compensated by multiplying the ratio
with ei kϕ(Ri−Ro ).



Appendix B

Paper: Performance of Several
Viscothermal Acoustic Finite Elements

Copy of the paper [43] published in Acta Acustica united with Acustica.
is paper presents convergence tests on several   formulations that
satisfy the inf-sup condition. Furthermore, the effect of the discretization of
the temperature field on the order of convergence is demonstrated.
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Summary
Viscothermal acoustics can be described by the linearized Navier Stokes equations. Besides inertia and com-
pressibility, these equations take the heat conductivity and the viscosity of the medium (air) into account. These
‘viscothermal’ effects are significant in, for example, miniature acoustic transducers and MEMS devices. A finite
element for viscothermal acoustics, which can be used to model such devices, is presented. The particular set of
equations used in the model of viscothermal acoustics leads to a complex symmetric finite element system matrix.
Several different FEM discretizations are studied on a 2D thin gap problem. These discretizations are known, in
the context of the Stokes equation, as the Taylor Hood quadrilateral and triangle elements, the Crouzeix Raviart
element and the MINI element. All elements are implemented in the FEM software COMSOL. The elements with
quadratic velocity and temperature shape functions show the best orders of convergence.
PACS no. 43.20.-f

1. Introduction
The standard model for isentropic acoustics is the wave
equation or the Helmholtz equation. The (dissipative) vis-
cothermal effects, being heat conduction and viscous fric-
tion, are neglected in this model. Unfortunately, this sim-
plification is not allowed in many cases. Particularly in
small geometries, these effects cannot be neglected. Ex-
amples of such applications are small acoustic transducers
used in hearing aids and mobile telephones, and vibrating
micro electro-mechanical systems (MEMS). A finite ele-
ment that can model the behavior of air in these devices is
presented in this paper.
Viscothermal acoustic models consist of a linearized set

of the Navier Stokes equations. Solving these models gen-
erally requires much more computational effort than solv-
ing isentropic acoustic problems. However, under certain
geometric constraints, the equations can be simplified con-
siderably. The literature presents models for gaps (layers)
and tubes that are hardly more costly to solve than isen-
tropic acoustic problems; see for example [1, 2, 3], based
on [4]. In these models, the gap thickness or the tube cross
section dimensions should be smaller than the acoustic
wavelength. Another family of models for which the re-
quired computational effort is reduced, is only valid for
large domains, relative to the viscous and thermal bound-
ary layer thicknesses, with smooth boundaries; see [5].
This model is based on the finite acoustic impedance of
a rigid boundary due to viscothermal effects, see also for
example [6, 7].

Received 10 March 2009,
accepted 15 September 2009.

In contrast, no geometric restrictions are imposed on the
finite element in this paper. However, this advantage does
lead to an increase in computational effort to solve the
model. The finite element in this paper has not only the
pressure, but also the temperature and the velocity vector
as degrees of freedom. Furthermore the FE mesh needs to
be much finer to resolve the boundary layer. Therefore, the
finite element in this paper is mainly intended to model
applications for which the simplified models mentioned
above can not be used.
Several viscothermal acoustic models without geomet-

ric restrictions have already been presented in the litera-
ture; see Cutanda [8] (based on Karra [9] and Bruneau [6])
for BEM and Malinen [10] for FEM. Cheng [11] presented
an acoustic finite element including viscous friction, but
without heat conduction. Furthermore, users of the FEM

software COMSOL can request an implementation of a fi-
nite element for viscothermal acoustics. All these finite
elements use a mixed formulation to accurately account
for near incompressibility. Joly [12] presents a method
for viscothermal acoustics without explicitly mentioning
a mixed method. Instead, similarity to standard elastody-
namic and diffusion equations is emphasized, which also
may be solved by a mixed method.
The finite elements used in this paper resemble COM-

SOL’s unofficial implementation. However, a differently
scaled entropy equation (for the thermal effects) is used.
This has the advantage of resulting in a complex symmet-
ric (although not Hermitian) FEM system matrix, which
can be solved with reduced computational costs.
Besides the specific formulation, several combinations

of shape functions can be chosen for the viscothermal fi-
nite element. For example, Malinen [10] uses bi-linear
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shape functions with added bubble functions for the veloc-
ity field, and Cheng [11] uses bi-quadratic shape functions
for the velocities and linear discontinuous shape functions
for the pressure. This paper shows the effect of the shape
functions on the order of convergence on a simple 2D
problem.
The paper starts with a presentation of the linearized

Navier Stokes equations for viscothermal acoustics in sec-
tion 2. Next, a weak formulation of this set of equations
and seven different finite element discretizations of it are
presented in section 3. In section 4, the convergence of
these finite elements are studied on a simple 2D prob-
lem. Finally, the results are discussed in section 5. The
viscothermal finite elements are implemented in the ‘PDE

application mode’ of the FEM software COMSOL; see [13].

2. Model of viscothermal acoustics

After introducing the notation of this paper, a set of
linearized Navier Stokes equations which describes vis-
cothermal acoustics is presented. Next, a material model
for air is explained. Then the Navier Stokes equations are
rewritten in a form with velocities, temperature and pres-
sure as the degrees of freedom. This section ends with
a discussion of the boundary conditions for viscothermal
acoustics.

2.1. Notation

Similar to normal acoustics, the equations of viscother-
mal acoustics can be formulated in time harmonic form,
in which the degrees of freedom are the complex valued
perturbation amplitudes of the variables. For example, the
pressure can be written as

p̌ = p0 +� �
peiωt

�
, (1)

with i the imaginary unit, ω the angular frequency and t
the time. The operator� takes the real part of its argument.
Moreover, p̌ is the (real valued) absolute pressure, p0 is the
(real valued) mean pressure, and p is the complex valued
pressure perturbation amplitude (or phasor) that is used as
a degree of freedom in the model. Similar definitions hold
for the other degrees of freedom; temperature T , density
ρ, velocity vector v, entropy s and enthalpy H . The mean
velocity v0 is assumed to be zero.

2.2. Linearized time harmonic Navier Stokes equa-
tions

Viscothermal wave propagation can be described by the
linearized Navier Stokes equations; see for example [14,
7]. For the linearization, small perturbations are assumed,
for example��p/p0�� � 1. (2)

Similar relations are valid for the other degrees of free-
dom. The exception is the velocity vector, whose magni-
tude is small compared to the (isentropic) speed of sound,
rather than the mean velocity (which is assumed to be

zero). It is also assumed that the non-linear convective
derivatives of the Navier Stokes equations can be replaced
by the linear time derivatives. Both assumptions are also
made in the derivation of the wave equation for isentropic
acoustics.
Using the notation from section 2.1, the linearized time

harmonic Navier Stokes equations for viscothermal acous-
tics can be written as

iωρ0v = �·σ + f , (3a)

iωρ0T0s = −�·q +Q, (3b)

iω ρ/ρ0 = −�·v. (3c)

The symbols q and σ denote the heat flow perturbation
and the total stress tensor; f and Q are the body force (per
unit volume) and the heat source. The symbol �· denotes
the divergence operator (� is the gradient operator).
Equation (3a) is the momentum balance and relates mo-

mentum change to the applied forces (per unit volume).
Equation (3b) is the entropy balance and relates the en-
tropy change to the applied heat. Equation (3c) is the mass
balance or continuity equation and relates density change
to mass inflow.
Interestingly, in the limit where the angular frequency

ω goes to zero, the set of equations reduces to the incom-
pressible Stokes equations. In this case, the entropy equa-
tion decouples. Based on this observation, the viscother-
mal acoustic equation could be regarded as the Stokes
equation with added inertia and compressibility terms.
The set of equations also contains the isentropic acous-

tic limit, for which s = 0. This requires zero heat trans-
fer and zero viscous stresses; or κ = 0, Q = 0, µ = 0
and λ = 0.1 Under these constraints, the system of equa-
tions reduces to the acoustic Helmholtz equation if the
remaining terms of the momentum equation and the en-
tropy equation are substituted into the continuity equation.
The viscothermal equations can therefore be regarded as
isothermal acoustics with added viscous and heat conduc-
tion terms. This is of course where the name ‘viscothermal
acoustics’ originates from.

2.3. Material model

The set of equation (3) is not complete: it does not contain
a material model. A Newton Fourier ideal gas model is
accurate for air in viscothermal acoustics in many cases;
see for example [14, 7].
A Newtonian fluid model is used to express the total

stress tensor as function of the velocity vector and the pres-
sure:

σ = τ − pI , (4a)

τ = λ(�·v)I + 2µε, (4b)

ε = 1
2

��v + (�v)T� . (4c)

1 The last two constraints cannot be deduced from equation (3b). They
originate from the nonlinear entropy equation, which contains a term
that accounts for viscous heating. This term is quadratic in the velocities
and therefore very small compared to the other terms under viscothermal
conditions. Therefore, this viscous heating term has been neglected in the
linearization.
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Here τ is the viscous stress tensor, I is the identity ten-
sor, ε is the symmetric part of the velocity gradient, and µ
and λ are the dynamic viscosity and the second viscosity
respectively.
The heat flow can be expressed as function of the tem-

perature gradient by Fourier’s law of heat conduction:

q = −κ�T, (5)

where κ is the heat conduction coefficient.
Finally, the assumptions of an ideal gas are made, which

results in the thermal and caloric equations of state:

ρ

ρ0
=

p

p0
− T

T0
, (6a)

H = CpT, (6b)

whereH is the enthalpy perturbation and Cp is the specific
heat at constant pressure. Equation (6a) is the linearized
version of the well known ideal gas law p̌ = ρ̌R0Ť with
R0 the specific gas constant.

2.4. Final PDE formulation
An additional identity is needed to rewrite the entropy in
the preferred degrees of freedom (v, T and p). This equa-
tion is known as the Gibbs relation: Ťdš = dȞ − ρ̌−1dp̌.
Linearization yields

ρ0T0s = ρ0H − p. (7)

The equations (4–7) can be substituted in the set of equa-
tions (3) to put it in a form with the velocity, temperature
and pressure as the degrees of freedom,

iωρ0v − �·σ = f , (8a)

iωρ0CpT + �·q − iωp = Q, (8b)

�·v − iω
T

T0
+ iω

p

p0
= 0. (8c)

The divergence terms are also a function of the chosen de-
grees of freedom,

�·σ = (λ + µ)�(�·v) + µΔv − �p, (8d)

�·q = −κΔT, (8e)

where Δ is the Laplace operator.

2.5. Boundary conditions
A total of four boundary conditions (BCs) must be pre-
scribed on each location of the boundary: three mechanical
BCs and one thermal BC. The mechanical BCs are velocity

v = gv, (9)

or stress

σ ·n =
�
λ (�·v) I + 2µε − pI

�·n = hv, (10)

where the symbol n is the normal unit vector on the bound-
ary, gv is the prescribed velocity data and hv the prescribed
stress data. Often, the mechanical BCs are decomposed
into the directions normal and tangential to the boundary.

On each boundary location and in each direction either a
velocity, or a stress must be prescribed. The thermal BCs
are temperature (Dirichlet)

T = gT , (11)

or heat flux (Neumann)

q ·n = −κ (�T )·n = hT . (12)

Likewise, on each boundary location either a temperature,
or a heat flux must be prescribed.
Typically, viscous effects are a result of zero tangential

velocity BCs, and thermal effects of zero temperature per-
turbation (isothermal) BCs. Frequently used BCs include
the wall BC with gv = 0 and gT = 0; and the symmetry BC

with gv ·n = 0, hv ·t1 = 0, hv ·t2 = 0 and hT = 0. Where t1
and t2 are the unit vectors tangential to the boundary.

Notice that the expression for the normal stress (σ·n)·n is
usually dominated by the pressure. Therefore, a prescribed
normal stress is similar to a prescribed acoustic pressure.
Furthermore, an acoustic impedance boundary condition
can be prescribed as a normal stress as function of the nor-
mal velocity: hv·n = Zv·n, whereZ is the impedance. No-
tice that the isentropic acoustic model inherently satisfies
the zero tangential (shear) stress and zero heat flux. Inter-
estingly, if zero tangential stress and zero heat flux would
be prescribed on all boundaries in a viscothermal acousti-
cal model, it would yield similar results as the isentropic
acoustic model.
In the finite element context, it would be straightforward

to apply the Dirichlet (velocity and temperature) BCs as
essential BCs and the Neumann (stress and heat flux) BCs
as natural BCs. The set of equations (8) already shows the
divergence of the stress tensor and divergence of the heat
flow vector. These terms can lead to the preferred natural
BCs; see the next section.

3. Finite element formulations

The set of equations (8) is the basis for the finite element.
This is called a mixed formulation, because the pressure
variable p can be removed (without increasing the order of
the differential equations) but is not. Removing the pres-
sure seems advantageous because it reduces the number
of equations and degrees of freedom, but it may cause
problems related to the (near) incompressibility; see [15].
Malinen [10] uses a scaled density variable instead of the
pressure to tackle the same problem in his mixed finite
element for viscothermal acoustics. Notice that the den-
sity fields also show boundary layers, which may be a dis-
advantage since this field is discretized with lower order
shape functions.
First, the weak form for the viscothermal finite element

is derived from the set of linearized Navier Stokes equa-
tions. The complex symmetry of the weak form is pointed
out. Next, several stable discretizations of this weak form
are presented.
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3.1. Weak form

The weak form is obtained by using a Galerkin approach:
the equations in (8) are multiplied by the weighing func-
tions vw , Tw and pw respectively, and integrated over the
domain Ω. Next, Green’s formula is applied to the terms
containing second order derivatives, namely �·σ and �·q.
Last, the entropy equation is divided by T0 to obtain a sym-
metric weak from. The resulting equations are

a(vw, v) − ��·vw, p� =

�vw,f� + �vw,hv�∂Ω , (13a)

c(Tw, T ) +
iω
T0

�Tw, p� =

− 1
T0

�Tw, Q� + 1
T0

�Tw, hT �∂Ω , (13b)

e(pw, p) − �pw,�·v� + iω
T0

�pw, T � = 0, (13c)

with

a(vw, v) = iωρ0 �vw, v� + 2µ �εw, ε�
+ λ ��·vw,�·v� , (13d)

c(Tw, T ) = − iωρ0Cp

T0
�Tw, T � (13e)

− κ

T0
��Tw,�T � , (13f)

e(pw, p) = − iω
p0

�pw, p� , (13g)

where εw is defined by equation (4c) in which v is replaced
by vw . Equation (13) uses the inner products over the do-
main Ω and its boundary ∂Ω, which are given by

�vw, v� =
�
Ω
vw ·v dΩ, (14)

�vw,hv�∂Ω =
�
∂Ω

vw ·hv d∂Ω, (15)

and similar for other arguments. The bar over vw denotes
complex conjugation. Notice that all complex conjuga-
tions in equation (13) are taken over the real valued weigh-
ing functions. The complex conjugation is only included
for the definition of a real valued norm that is used later
(equation 18). For tensors, the dot products in equations
(14) and (15) are replaced by the double dot product.
As usual in a Galerkin approach, the weighing functions

will use the same function basis as their corresponding de-
grees of freedom; for example, p and pw have the same
function basis. All used bases consist of real valued func-
tions only. Therefore, the weak form of equation (13) al-
ready shows that the resulting FEM system matrix will be
complex symmetric (not Hermitian). The system matrix
becomes complex only because of the iω terms in equation
(13). In matrix notation, the discretetized FEM version of
equation (13) reads A 0 B

0 C D
BT DT E



−→v−→
T−→p

 =


−→
f−→
Q
0

 , (16)

where −→v , −→T and −→p are the vectors of nodal values of the
FE model. The sub-matrices A, C and E correspond to
a, c and e defined by equation (13). The sub-matrices B
and D stem from the terms in the weak form that contain
��·vw, p� and �Tw, p�; and the transposed of these sub-
matrices stem from the terms that contain �pw,�·v� and
�pw, T �. The right hand side of equation (16) corresponds
to the right hand sides of equation (13) and contains the
body forces, the heat sources and the natural boundary
conditions. If these terms are prescribed as a function of
the DOFs, they will contribute to the system matrix. This
can be the case for impedance boundary conditions. Usu-
ally, this contribution is complex symmetric. Therefore,
usually the system matrix is complex symmetric. Some
solvers, see [13], can use this symmetry to reduce the solv-
ing time and memory requirements; see section 4.3 for an
indication of these reductions.

3.2. FEM discretizations

The weak form of equation (13) can be discretized by us-
ing the usual FEM shape functions to interpolate the de-
grees of freedom. Similar to FEM discretizations of the in-
compressible Stokes equations, only certain combinations
of the velocity and the pressure shape function spaces are
stable. For example, if the same shape functions are cho-
sen for these DOFs, the element is instable. This problem,
related to the incompressibility, has been extensively ana-
lyzed in the literature, especially on the Stokes equations.
For example, Gunzburger [15] describes solutions to this
problem. Comparable mixed formulations can be used in
isentropic acoustics (using a displacment/pressure based
formulation); see [16].
For viscothermal acoustics, which can be regarded as

nearly incompressible, the same problem occurs. In this
paper, four conforming discretizations of v and p that are
stable for the Stokes equations (they satisfy the inf-sup
condition) will be used to discretize equation (13). Table I
summarizes these four discretizations: the Taylor Hood tri-
angle element and the Taylor Hood quadrilateral element
[17], the Crouzeix Raviart element [18] and the MINI ele-
ment of Arnold, Brezzi and Fortin [19]. The original publi-
cations are indicated, but an overview of all these elements
and many more in the context of the (Navier-)Stokes equa-
tions can be found in many textbooks and papers, for ex-
ample [15, 20, 21]. The symbols � and denote a trian-
gular and a quadrilateral shape. The symbols P1, P2, Q1

and Q2 indicate piecewise linear, quadratic, bilinear and
biquadratic C0 continuous FEM shape functions respec-
tively. These shape functions are all from the family of La-
grangian shape functions. The symbol P−1 denotes piece-
wise linear pressure shape functions that are discontinuous
over the element boundaries. Finally, the superscript plus
sign as in P+

1 indicates that the function space is enriched
by cubic bubble functions. This paper only shows a 2D
case, but all elements have 3D equivalents which are sta-
ble for the Stokes equations.
In comparison, Malinen [10] uses a quadrilateral ele-

ment that is related to the MINI element; see also [22].
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Table I. Discretizations that are stable for the mixed Stokes equa-
tions.

Stokes element shape v, vw p, pw T , Tw

Taylor Hood � P2 P1 P2

Taylor Hood Q2 Q1 Q2

Crouzeix Raviart � P +
2 P−1 P2

MINI � P +
1 P1 P1

This element uses alternative bubble functions that COM-
SOL does not provide. Cheng [11] uses a 3D brick element
with Q2 velocity shape functions and P−1 pressure shape
functions, and no temperature shape functions. COMSOL

does not provide P−1 shape functions on brick (or quadri-
lateral) elements.
There are no indications that the discretization of the

temperature DOF is critical for the stability of the element;
the temperature field even decouples in the limit ω → 0.
Since the temperature and velocity boundary layer are sim-
ilar in shape and size, it seems advantageous to use the
same order of shape functions for the temperature as for
the velocity components, as indicated in table I. Besides
these shape functions, lower order shape functions for T
are also tested in the next section.

4. Results

The finite element is intended to model engineering prob-
lems with arbitrarily shaped geometries. Especially for ge-
ometries with one or more characteristic dimensions that
are of comparable size as the boundary layers. In other
cases, Bossart’s model [5] might be a computationally less
costly alternative to the finite element presented in this pa-
per.
For the evaluation of the elements, a problem with a

known solution is used: the thin gap. After introduction of
this problem, the performance of the elements with differ-
ent discretizations are compared. Last, the benefits of the
complex symmetry of the FEM matrix are demonstrated.

4.1. The thin gap problem

The considered problem is a thin 2D gap that is closed at
the left hand side (vx = 0) and has a pressure source at the
right hand side (p = 1); see Figure 1. Viscous and thermal
boundary layers form along the walls of the gap (drawn
with thick lines). The thickness is h0 = 0.25 mm and the
length is L = 2 mm.
The gap is very thin compared to the acoustic wave-

length. Therefore, it can be accurately described by the low
reduced frequency (LRF) model for layers; see [2]. This
model describes the viscous and thermal effects in the gap
thickness, or z-direction and the dissipative wave propa-
gation in x-direction. The LRF model is accurate for the
velocity in propagation direction, the pressure and the tem-
perature DOFs. This accurate solution can be made to sat-
isfy equations (8) exactly by letting these solutions define
the velocity in cross section direction vz, the heat source

vx = 0 p=1h0

L

x

z

Figure 1. The gap geometry with LRF boundary conditions,
dimensions, symmetry line and coordinate directions.
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Figure 2. Velocity and temperature solutions at x = L, for
f = 10 kHz (——) and f = 100 Hz (– – –).

Q and the body forces f ; see the appendix. Although the
effects of Q and f on the solution are very small, the ex-
act solution is used to compare the convergence behavior
of the four FEM discretizations described in the previous
section and the alternatives with lower order temperature
discretization.
A frequency range of 10 Hz to 10 kHz is used in the

tests. Only the upper half of the layer is modeled in the FE

model. A symmetry boundary condition is applied at the
symmetry line. Furthermore, essential velocity and tem-
perature boundary conditions that are defined by the exact
solution are applied on the remaining three boundaries.
Figure 2 shows the solutions of the temperature and the

velocity in x-direction, at x = L, for f = 100 Hz and
f = 10 kHz, obtained with the LRFmodel. Clearly, the vis-
cothermal effects are prevalent even for the upper limit of
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= 0
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Figure 3. Quadrilateral and triangular mesh sequences. In each
refinement, the element size is halved and the surface area di-
vided by four. Notice that for each value of M , the triangular
mesh contains more degrees of freedom than the corresponding
rectangular mesh.

the chosen frequency range. This frequency range is cho-
sen, because within this range the model of Bossart [5]
loses accuracy and the viscothermal finite element gains
accuracy; see the next section. Furthermore, the stability
problems related to incompressibility, if present, are ex-
pected to occur at low frequencies.

4.2. Convergence

The convergence of the finite element is tested by investi-
gating the error for a sequence of meshes. In a subsequent
mesh refinement, each element is divided in four elements,
halving the element size he. Figure 3 shows the first three
mesh cases. The higher mesh cases follow the same pat-
tern.
A relative error measure is used in this section, defined

by

ep =

��p − p̂
����p̂

�� (17)

for the pressure and similarly for the other degrees of free-
dom. In this equation the hat, as in p̂, denotes the exact
solution. The used norm is the L2 norm:��p̂

�� =
�
�p̂, p̂�. (18)

These norms and error measures are real valued because
of the complex conjugation in the inner product, defined
by equation (14).
The finite element errors are shown in Figures 4 to 6.

Comparable elements are plotted in the same figures.
Clearly the lowest errors are obtained with the quadrati-
cal elements in Figure 4. For these elements, the errors in

all variables drop to very low values at low frequencies.
Furthermore, these elements show the largest error reduc-
tion for each mesh refinement; that is the largest order of
convergence.
The dotted line in these figures is the result from a

FEM implementation of the model of Bossart. The param-
eter kw (see [5]) is manually set to the accurate value
kw = k = ω/c0, to show the best case scenario for this
model. The figure shows the anticipated increase in the
errors evx and eT for lower frequencies. Despite the high
error in the velocity and temperature of this model at low
frequencies, the error in the pressure ep remains very low
and reduces for lower frequencies. This is not surpris-
ing because the modeled gap is very short compared to
the wavelength. Therefore the pressure is almost uniform
and becomes more uniform for lower frequencies (larger
wavelengths). For the high frequency range the errors in
the velocity and temperature of Bossart’s model are com-
petitive with those of the viscothermal finite element.
The figures show a reduction of the error with each

mesh refinement. The distances between the lines in the
figures indicate the orders of convergence. For the Taylor
Hood and Crouzeix Raviart elements listed in table I, the
orders of convergence, calculated from Figure 4, are

evx ∝ h3e , eT ∝ h3e , ep ∝ h4e ;

with he the element size in [m]. If the (bi)quadratic shape
functions for the temperature are replaced by (bi)linear
shape functions, the orders of convergence, calculated
from Figure 5, are

evx ∝ h3e , eT ∝ h2e , ep ∝ h2e ;

and for the mini element, also listed in table I, the orders
of convergence, calculated from Figure 6, are

evx ∝ h2e , eT ∝ h2e , ep ∝ h2e .

The order of convergence is one order higher than the or-
der of the used shape functions, as expected from inter-
polation theory. The only exception, in positive sense, is
the pressure degree of freedom in Figure 4, which is the
additional DOF in the mixed formulation. Its order of con-
vergence is 4 for these elements with quadratic velocity
and temperature shape functions.
In most figures, the error is proportional to frequency:

e ∝ f . However, for elements with linear shape functions,
the frequency dependence vanishes below 300 Hz: the
lines become horizontal. Below this frequency, the temper-
ature and velocity profiles become parabolic, see Figure 2.
Therefore quadratic shape functions become exact in the
low frequency limit.
The error in the velocity for the triangular elements

with quadratic shape functions also becomes frequency in-
dependent, but at a frequency of 10 Hz. The quadrilateral
Taylor Hood element does not show this behavior. The
effect is not further investigated, because the lowest fre-
quency is already an extremely viscous case. Moreover,
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Figure 4. Performance of the Taylor hood quadrilateral (– – –), triangle (——) and the Crouzeix Raviart element (thick grey line,
mostly hidden below ——) for mesh cases M = 0 to M = 5, from top to bottom. Especially the order of convergence of the pressure
is high. The error of Bossart’s model is shown in comparison (· · · ).
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Figure 5. Performance of the Taylor hood quadrilateral with bilinear temperature (– – –), triangle with linear temperature (——) and
the Crouzeix Raviart (thick grey line, mostly hidden below ——) element with linear temperature for mesh cases M = 0 to M = 5,
from top to bottom. The linear temperature discretization affects not only the temperature error, but also the pressure error. The error of
Bossart’s model is shown in comparison (· · · ).
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Figure 6. Performance of the mini element for mesh cases M = 0 to M = 6, from top to bottom. The errors in the different variables
errors are comparable, especially at low frequencies. The error of Bossart’s model is shown in comparison (· · · ).

the order of convergence is not reduced and the error is
already very low.
In conclusion, the Taylor Hood and Crouzeix Raviart el-

ements with quadratic velocity and temperature variables
are the best of the reviewed elements. The order of conver-
gence of the pressure is two orders better than for the other
elements. Furthermore, they behave better at the low fre-
quency range where the velocity and temperature profiles
become parabolic.

4.3. Benefits of complex symmetry

In section 3, the complex symmetry of the finite element
formulation was presented as an advantage with respect
to computational costs. Since the computational cost de-
pends on many parameters, such as mesh, element and
solver, the above claim is not thoroughly investigated.
However, Table II does give an idea of the differences be-
tween the calculation times with a symmetrical systemma-
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Table II. The benefits of a complex symmetric FEM system ma-
trix: faster solving and lower memory usage.

Element Mesh Solver t symm t unsymm

TH� 4 PARDISO 35 [s] 45 [s]
TH 5 PARDISO 139 [s] fails
CR 4 SPOOLES 96 [s] 129 [s]
MINI 4 SPOOLES 28 [s] 71 [s]

trix and an unsymmetrical system matrix. The only differ-
ence between the symmetrical and unsymmetrical formu-
lation is that in the latter, the entropy equation (13b) is
re-multiplied by T0.

The solvers PARDISO and SPOOLES are direct solvers
which can benefit from the complex symmetry and are
included in the FEM software COMSOL. The time listed
in Table II is the total solving time for ten frequencies
between 10 Hz and 10 kHz and includes assembly as
well as factorization of the system matrix. One calculation
failed because of insufficient system memory. Clearly, the
complex symmetric formulation results in a reduction of
both the solving time and the required system memory, al-
though the amount of this reduction varies.

5. Conclusions

This paper shows that viscothermal wave propagation,
based on the linearized Navier Stokes equations, can be
described by finite elements with complex symmetric FEM

system matrices. Some solvers can use the complex sym-
metry, resulting in reduced solving time and reduced mem-
ory requirements.
Several FEM discretizations, which are stable for the

Stokes equations, have been tested. These discretizations
also yield stable viscothermal acoustic finite elements.
The best performance is obtained with the Taylor Hood
and Crouzeix Raviart elements with quadratic tempera-
ture shape functions.

Appendix: Analytical solution based on the
LRF model

The exact solution used in the paper is derived in this ap-
pendix. It is based on the LRF model, see [1] for tubes and
[2, 3] for both tubes and layers. The coordinates of the
problem in Figure 1 are x = [0, L] and z = [−h0, h0]. In
the context of the LRF model, the x coordinate is the prop-
agation direction and the z coordinate is the cross section
direction. First some variables and functions need to be
defined.
Define the wave numbers (not to be confused with the

entropy s):

sµ = h0

�
ρ0ω

µ
, sκ = h0

�
ρ0Cpω

κ
,

kr =
ωh0
c0

, k =
ω

c0
.

(A1)

These wave numbers are dimensionless, except for k. The
LRF model is only valid if

kr

sµ
� 1, (A2)

kr

sκ
� 1, (A3)

kr � 1. (A4)

The LRF equations can be partially solved in the cross sec-
tion direction. For layer geometries, this results in the z
dependent functions

A(z) =
cosh(sµ z

h0

√
i)

cosh(sµ
√
i)

− 1,

B(z) =
sinh(sµ z

h0

√
i)

sµ
√
i cosh(sµ

√
i)

− z

h0
,

B̃(z) =
sinh(sµ z

h0

√
i)

sµ
√
i cosh(sµ

√
i)
,

C(z) =
cosh(sκ z

h0

√
i)

cosh(sκ
√
i)

− 1,

D(z) =
sinh(sκ z

h0

√
i)

sκ
√
i cosh(sκ

√
i)

− z

h0
,

D̃(z) =
sinh(sκ z

h0

√
i)

sκ
√
i cosh(sκ

√
i)
,

(A5)

where B is the dimensionless integral of A, and D that
of C, defined by (1/h0)

� z

0 . . . dz. Furthermore, ∂A/∂z =
is2µ/h0 B̃ and, likewise, ∂C/∂z = is2κ/h0 D̃. These func-
tions are used to formulate the solutions.
The pressure is constant in the cross section direction. In

the propagation direction, it should satisfy the Helmholtz
equation

∂2p

∂x2
− k2Γ2p = 0. (A6)

The symbol Γ in this equation denotes the propagation
constant. It is a complex valued correction of the acous-
tic wave number, defined by

Γ =

�
γ

nB(h0)
,

n =
�
1 +

R0

Cp
D(h0)

�−1
. (A7)

With boundary conditions vx = 0 → ∂p/∂x = 0 at x = 0
and p = 1 at x = L, the LRF pressure solution is

p(x) =
cosh(Γkx)
cosh(ΓkL)

. (A8)

The velocity and temperature fields are defined as function
of the pressure field.

vx(x, z) = − iA(z)
kρ0c0

∂p(x)
∂x

= − tanh(Γkx)A(z)
ρ0c0

iΓp, (A9)

T (x, z) = −C(z)
ρ0Cp

p(x). (A10)
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The velocity in cross section direction can be determined
from the continuity equation (8c):

∂vz
∂z

= −∂vx
∂x

+
iω
T0

T − iω
p0

p (A11)

=
�
Γ2

γ
A(z) − R0

Cp
C(z) − 1

�
iω
p0

p. (A12)

Integration using vz = 0 at z = 0, from symmetry consid-
erations, yields

vz =
�
Γ2

γ
B(z) − R0

Cp
D(z) − z

h0

�
γkr

ρ0c0
ip, (A13)

thus vz is small compared to p and vx, according to equa-
tion (A2). The volumetric heat source can be calculated
from the entropy equation (8b):

Q = iωρ0CpT − κΔT − iωp =
k2
r

s2κ
Γ2C(z)ωp, (A14)

which is very small compared to the term iωp, according
to equation (A2).
The body force in propagation direction can be deter-

mined from the momentum equation (8a) in this direction:

fx = iωρ0vx − (�·σ)x (A15)

=
�

λ + µ

µ

�
γR0

Cp
C(z) + γ

�
+ Γ2A(z)

�
i
k2
r

s2µ

∂p

∂x
.

This is small compared to ∂p
∂x , present in (� ·σ)x in the

momentum equation; again according to equation (A2).
Finally, the body force in z direction can also be cal-

culated from the momentum equation (8a), but now in z
direction:

fz = iωρ0vz − (�·σ)z

=



1 + iΓ2 k

2
r

s2µ

�
iωρ0vz (A16)

+



Γ2B̃(z) − λ + 2µ

µ

γR0

Cp

s2κ

s2µ
D̃(z)

�
krkp.

This body force has a larger magnitude than fx, but it is
still small and does not influence the solutions of vx, T and
p significantly. It does have a small but noticeable effect
on vz. Nevertheless, this velocity has a small magnitude
itself and is not a very interesting degree of freedom of the
model for most applications of the LRF model.
The exact solution used in section 4 is defined by equa-

tions (A8–A10,A13–A16).
The difference in the error that result from a calculation

with and without the terms f and Q are small. For Taylor
Hood quadrilaterals mesh case M = 4 (see section 4) the
difference is the largest, but still small, for the pressure
field; see Figure A1.

10
1

10
2

10
3

10
4

10
-8

10
-6

10
-4

f [Hz]

ep

Figure A1. Error of the pressure field with (——) and without
(– – –) f and Q; mesh case M = 4, Taylor Hood quadrilateral.
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Appendix C

Comsol script: FLNS microphone
model

% COMSOL Multiphysics Model M-file
% Generated by COMSOL 3.5 (COMSOL 3.5.0.494, $Date: 2008/09/19 16:09:48 $)
% Edited by W.R. Kampinga

flclear fem

% COMSOL version
clear vrsn
vrsn.name = 'COMSOL 3.5';
vrsn.ext = '';
vrsn.major = 0;
vrsn.build = 494;
vrsn.rcs = '$Name: $';
vrsn.date = '$Date: 2008/09/19 16:09:48 $';
fem.version = vrsn;

% Constants
fem.const = {'freq','160e3','Pm','1', ...

'sma','3128','rhom','8300*6.95e-6', ...
'km','omega*sqrt(rhom/sma)','T0','294.30000', ...
'p0','101500.00','rho0','1.2254935', ...
'c0','341.20058','mu','1.8294e-005', ...
'kappa','0.0251808','Cp','gg/(gg-1)*p0/(rho0*T0)', ...
'gg','rho0*c0^2/p0','omega','2*pi*freq', ...
'Pr','mu*Cp/kappa','lda','(0.6-2/3)*mu', ...
'pref','20e-6','Z0','rho0*c0', ...
'k0','omega/c0','kv','sqrt(-i*omega*rho0/mu)', ...
'kh','sqrt(-i*omega*rho0*Cp/kappa)'};

% Geometry
clear draw
g11=rect2('0.0020','18E-6','base','corner','pos',{'0','0'},'rot','0');
draw.s.objs = {g11};
draw.s.name = {'R1'};
draw.s.tags = {'g11'};
fem.draw = draw;
fem.geom = geomcsg(fem);

% Create mapped quad mesh
fem.mesh=meshmap(fem, ...

'edgegroups',{{[2],[4],[3],[1]}}, ...
'edgelem',{1,[0 0.08 0.31 0.69 0.92 1],2,[0:0.01:1], ...

3,[0:0.01:1],4,[0 0.08 0.31 0.69 0.92 1]}, ...
'hauto',4);

% (Default values are not included)

% Application mode 1: viscothermal acoustics
clear appl
appl.mode.class = 'FlPDEW';
appl.dim = {'vr','vz','T','p','vr_t','vz_t','T_t','p_t'};
appl.sdim = {'r','z','theta'}; % cylinder coordinates
appl.name = 'vtacoaxi';
appl.shape = {'shlag(2,''vr'')','shlag(2,''vz'')','shlag(2,''T'')','shlag(1,''p'')'};
appl.gporder = {4,2};
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appl.cporder = {2,1};
appl.assignsuffix = '_vtacoaxi';
clear bnd
bnd.constrf = {'test(-vr)',{'test(-vr)';'test(-vz)';'test(-T)'},0,'test(-vr*nr-vz*nz)', ...

'test(-vz*tz-vr*tr)',{'test(u-vz)';'test(-vr)';'test(-T)'}};
bnd.name = {'axis','isoth. wall','P','isentropic wall','P0 normal flow','vmemb'};
bnd.constr = {'-vr',{'-vr';'-vz';'-T'},0,'-vr*nr-vz*nz','-vz*tz-vr*tr',{'u-vz'; ...

'-vr';'-T'}};
bnd.weak = {0,0,'P*r*(test(vz)*nz+test(vz)*nr)',0,0,0};
bnd.ind = [1,2,6,5];
appl.bnd = bnd;
clear equ
equ.cporder = {{1;1;1;2}};
equ.bndgporder = {{1;1;1;2}};
equ.dweak = 0;
equ.gporder = {{1;1;1;2}};
equ.name = 'vtacoaxi';
equ.weak = {{['i*omega*rho0*r*(vr*test(vr)+vz*test(vz))+' ...
'2*mu*(r*vrr*test(vrr)+vr/r*test(vr)+r*vzz*test(vzz))+mu*r*(vrz+vzr)*(test(vrz)+test(vzr))+' ...
'lda*(vrr+vr/r+vzz)*(r*test(vrr)+test(vr)+r*test(vzz))']; ...
'-i*omega*rho0*Cp/T0*r*T*test(T)-kappa/T0*r*(Tz*test(Tz)+Tr*test(Tr))'; ...
['-i*omega/p0*r*p*test(p)-(r*vrr+vr+r*vzz)*test(p)-p*(r*test(vrr)+test(vr)+r*test(vzz))+' ...
'i*omega/T0*r*(T*test(p)+p*test(T))']}}; % axi-symmetric weak form of FLNS model

equ.ind = [1];
appl.equ = equ;
fem.appl{1} = appl;

% Application mode 2: membrane
clear appl
appl.mode.class = 'FlPDEWBoundary';
appl.sdim = {'r','z','theta'};
appl.name = 'membrane';
appl.sshape = 2;
appl.assignsuffix = '_membrane';
clear prop
clear weakconstr
weakconstr.value = 'off';
weakconstr.dim = {'lm9','lm10'};
prop.weakconstr = weakconstr;
appl.prop = prop;
clear pnt
pnt.constrf = {0,'test(-u)'};
pnt.constr = {0,'-u'};
pnt.ind = [1,1,1,2];
appl.pnt = pnt;
clear bnd
bnd.name = {'','membrane'};
bnd.usage = {0,1};
% axi-symmetric weak form membrane model:
bnd.weak = ['-sma*uTz*r*test(uTz)-sma*uTr*r*test(uTr)+sma*km^2*r*u*test(u)-' ...

'(Pm-p+lda*(vrr+vr/r+vzz)+2*mu*vzz)*(i*omega)*r*test(u)']; % for membrane at z=const surface
bnd.ind = [1,1,2,1];
appl.bnd = bnd;
fem.appl{2} = appl;
fem.sdim = {'r','z'};
fem.frame = {'ref'};
fem.border = 1;

% Coupling variable elements
clear elemcpl
% Integration coupling variables
clear elem
elem.elem = 'elcplscalar';
elem.g = {'1'};
src = cell(1,1);
clear bnd
bnd.expr = {{{},'u/(i*omega)*r'}};
bnd.ipoints = {{{},'4'}};
bnd.frame = {{{},'ref'}};
bnd.ind = {{'1','2','4'},{'3'}};
src{1} = {{},bnd,{}};
elem.src = src;
geomdim = cell(1,1);
geomdim{1} = {};
elem.geomdim = geomdim;
elem.var = {'U'}; % related to sensitivity: U=(H*Rm^2)/2
elem.global = {'1'};
elem.maxvars = {};
elemcpl{1} = elem;
fem.elemcpl = elemcpl;
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% Descriptions
clear descr
descr.const= {'kv','viscous wave number [1/m]', ...

'freq','frequency [Hz]','p0','quiescent pressure [Pa]', ...
'Pm','pressure outside the mic [Pa]','kappa','dynamic viscosity [W/(m*K)]', ...
'mu','dynamic viscosity [Pa*s]','k0','isentropic acoustic wave number [1/m]', ...
'omega','angular frequency [rad/s]','T0','quiescent temperature [K]', ...
'km','membrane wave number [1/m]','lda','second viscosity [Pa*s]', ...
'Z0','characteristic isentropic impedance [Pa/(m/s)]','kh','thermal wave number [1/m]', ...
'sma','membrane tension [N/m]','Pr','Prandtl number [1]', ...
'Cp','specific heat at constant pressure [W/(m*K)]','rhom','membrane density [kg/m^2]', ...
'c0','speed of sound [m/s]','gg','ratio of specific heats [1]', ...
'rho0','quiescent density [kg/m^3]','pref','reference pressure [Pa]'};

fem.descr = descr;

% ODE Settings
clear ode
clear units;
units.basesystem = 'SI';
ode.units = units;
fem.ode=ode;

% Multiphysics
fem=multiphysics(fem);

% Extend mesh
fem.xmesh=meshextend(fem);

% Solve problem
fem.sol=femstatic(fem, ...

'u',0, ...
'solfile','on', ...
'solcomp',{'T','u','vz','p','vr'}, ...
'outcomp',{'T','u','vz','p','vr'}, ...
'blocksize','auto', ...
'pname','freq', ...
'plist',[2*logspace(2,5,3)], ... % only 3 frequencies for faster opening (was 101)
'oldcomp',{}, ...
'linsolver','pardiso');

% Save current fem structure for restart purposes
fem0=fem;

% Plot solution
postplot(fem, ...

'tridata','abs(p)', ...
'trimap','jet(1024)', ...
'solnum','end');
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Latin variables

c0 Speed of sound [m/s] Eq. (2.9)
Cp Specific heat at constant pressure [J/(kgK)] Eq. (2.7)
Cv Specific heat at constant volume [J/(kgK)] Eq. (2.11)
e Euler’s number [1]
F Magneto-motive force [A] Eq. (5.5)
H Specific enthalpy phasor [J/kg] Eq. (2.7)
k0 Isentropic acoustic wave number [m−1] Eq. (3.1)
kh ermal wave number [m−1] Eq. (3.1)
kℓ Modified acoustic wave number () [m−1] Eq. (3.54)
km Membrane wave number [m−1] Eq. (4.6)
kv Viscous wave number [m−1] Eq. (3.1)
k∥ Tangential acoustic wave number () [m−1] Eq. (3.37)
k̃h Dimensionless thermal wave number [1] Eq. (3.2)
k̃v Dimensionless viscous wave number [1] Eq. (3.2)
ℓ Characteristic length of  cross section [m] Eq. (3.40)
Npr Prandtl number [1] Eq. (1.15)
n Outward normal vector on boundary [1]
p Pressure phasor [Pa]
p0 iescent pressure [Pa]
p̌ Total pressure [Pa]
p̃ Dimensionless pressure phasor [1] Eq. (3.2)
q Heat flow phasor [W/m2] Eq. (2.5)
R0 Specific gas constant [J/(kgK)] Eq. (2.8)
R Magnetic reluctance [H−1] Eq. (5.5)
Scd Cross section area of Ωcd () [m], [m2]
š Total specific entropy [J/(kgK)]
s Specific entropy phasor [J/(kgK)]
T Temperature phasor [K]
T0 iescent temperature [K]
Ť Total temperature [K]
T̃ Dimensionless temperature phasor [1] Eq. (3.2)
t Time [s] Eq. (1.1)
tc Computational time per frequency [s]
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t Tangential vector on boundary [1]
v Velocity vector phasor [m/s]
v̌ Total velocity vector [m/s]
ṽ Dimensionless velocity vector phasor [1] Eq. (3.2)
Z0 Characteristic isentropic impedance [Pas/m] Eq. (1.10)
Zℓ Characteristic  impedance [Pas/m] Eq. (3.56)

Greek variables

γ Ratio of specific heats [1] Eq. (2.10)
δh ermal boundary layer thiness [m] Eq. (1.14)
δv Viscous boundary layer thiness [m] Eq. (1.14)
ε Symmetric part of the velocity gradient [s−1] Eq. (2.1)
ζ Dimensionless impedance () [1] Eq. (3.36b)
η Bulk viscosity [Pas] Eq. (2.2)
θ Angle of incidence [rad] Fig. 3.4(a)
ϑ Acoustic volume flow [m3/s]
ϑcd Acoustic volume flow over ∂Ωcd () [m/s], [m2/s] Eq. (3.55)
ϑpd Acoustic volume flow over ∂Ωpd () [m2/s], [m3/s] Eq. (3.60)
κ Heat conduction coefficient [W/(Km)] Eq. (2.5)
λ Second viscosity [Pas] Eq. (2.1)
λ0 Acoustic wavelength [m] Eq. (1.14)
λh ermal wavelength [m] Eq. (1.14)
λ′

h Alt. thermal boundary layer thiness [m] Eq. (1.14)
λv Viscous wavelength [m] Eq. (1.14)
λ′

v Alt. viscous boundary layer thiness [m] Eq. (1.14)
µ Dynamic viscosity [Pas] Eq. (2.1)
ρ Density phasor [kg/m3]
ρm Membrane mass per surface Sec. 4.3.1
ρ0 iescent density [kg/m3]
ρ̌ Total density [kg/m3]
ρ̃ Dimensionless density phasor [1] Eq. (3.2)
σ Stress tensor phasor [N/m2] Eq. (2.1)
σm Membrane tension [N/m] Sec. 4.3.1
τ Viscous stress tensor phasor [N/m2] Eq. (2.1)
Υh Lumped thermal field [1] Eq. (3.47a)
Υ′

h Lumped modified thermal field [1] Eq. (3.46b)
Υv Lumped of viscous field [1] Eq. (3.47a)
Φ̌ Viscous heating [W/m3]
ϕ Dummy variable [•]
ϕ Magnetic flux (Chapter 5) [Wb] Eq. (5.5)
ϕ̇ Magnetic flux rate (Chapter 5) [Wb/s]
Ψh ermal field [1] Sec. 3.1.4
Ψ′

h Modified thermal [1] Sec. 3.1.4
Ψv Viscous field [1] Sec. 3.1.4
ξ̃ Dimensionless viscosity group [1] Eq. (3.2)
ω Angular frequency [rad/s] Eq. (1.1)
Ω Domain
∂Ω Boundary of Ω Eq. (2.12)
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Ωcd Cross section domain () Tab. 3.1
∂Ωcd Boundary of cross section domain () Tab. 3.1
Ωpd Propagation domain () Tab. 3.1
∂Ωpd Boundary of propagation domain () Tab. 3.1
∂Ωm Boundary with a membrane
∂2Ωm Boundary of the membrane

Operators and functions

J Bessel function of the first kind
H Hankel function
Dϕ
Dt Material derivative
ℑ(

ϕ
)

Imaginary part
ℜ(

ϕ
)

Real part
ϕT Transpose
ϕ Complex conjugate
∇ϕ Gradient
∇nϕ Gradient normal to boundary
∇tϕ Gradient tangential to boundary
∇∥ϕ Tangential gradient Fig. 3.3
∇⊥ϕ Perpendicular gradient Fig. 3.3
∇̃ϕ Dimensionless gradient Eq. (3.2)
∇·ϕ Divergence
∇̃ ·ϕ Dimensionless divergence Eq. (3.2)
∆ϕ Laplacian
∆̃ϕ Dimensionless Laplacian Eq. (3.2)⟨
ϕ,ϕ

⟩
Hermitian inner product Eq. (2.24)⟨

ϕ
⟩

Mean value Eq. (3.47a)
|ϕ| Absolute value
∠ϕ Complex angle
ϕw Weighing function

Abbreviations

 Boundary condition
 Boundary element method
 Boundary layer impedance (model)
 Degree of freedom
 Finite element method
 Full linear Navier-Stokes (model)
 Fluid structure interaction
 Low reduced frequency (model)
 Partial differential equation
 Sequential linear Navier-Stokes (model)
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